

Service Disclaimer
This manual was written for use with the Modulus APR software. This manual and the product described in it
are copyrighted, with all rights reserved. This manual and the product (exe files, source code, images, data,
and other files belonging to the product) may not be copied, except as otherwise provided in your license or
as expressly permitted in writing by Modulus Financial Engineering, Inc. Export of this technology may be
controlled by the United States Government. Diversion contrary to U.S. law prohibited. Copyright © 2008 by
Modulus Financial Engineering, Inc. All rights reserved. Modulus Financial Engineering and “APR” ™ are
registered trademarks of Modulus Financial Engineering, Inc. in the United States and other countries. All
other trademarks and service marks are the property of their respective owners. Use of the APR product and
other products accompanying your license and its documentation are governed by the terms set forth in your
license. Such use is at your sole risk. The product and its documentation (including this manual) are
provided "AS IS" and without warranty of any kind and Modulus Financial Engineering, Inc. AND ITS
LICENSORS (HEREINAFTER COLLECTIVELY REFERRED TO AS “MFE”) EXPRESSLY DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND AGAINST
INFRINGEMENT. MFE DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE PRODUCT
WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE PRODUCT WILL BE
UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE PRODUCT OR ERRORS IN THE
DATA WILL BE CORRECTED. FURTHERMORE, MFE DOES NOT WARRANT OR MAKE ANY
REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE USE OF THE PRODUCT OR
ITS DOCUMENTATION IN TERMS OF THEIR CORRECTNESS, ACCURACY, RELIABILITY, OR
OTHERWISE. NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY MFE OR AN MFE
AUTHORIZED REPRESENTATIVE SHALL CREATE A WARRANTY OR IN ANY WAY INCREASE THE
SCOPE OF THIS WARRANTY. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY. UNDER NO CIRCUMSTANCES
INCLUDING NEGLIGENCE, SHALL MFE, ITS LICENSORS OR THEIR DIRECTORS, OFFICERS,
EMPLOYEES OR AGENTS BE LIABLE FOR ANY INCIDENTAL, SPECIAL OR CONSEQUENTIAL
DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS, LOSS OF PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION AND THE LIKE) ARISING OUT OF THE USE OR
INABILITY TO USE THE PRODUCT OR ITS DOCUMENTATION, EVEN IF MFE OR AN MFE
AUTHORIZED REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY
NOT APPLY. In no event shall MFE's total liability to you for all damages, losses, and causes of action
(whether in contract, tort, including negligence, or otherwise) exceed the amount paid for the product and its
documentation.

Overview

The Modulus APR library is the world's first template-driven, fully dynamic, pattern
recognition engine for identifying patterns in financial data. Our patent-pending
technology uses fuzzy logic to match dynamic patterns in stock, futures and forex data
with extreme speed and accuracy.

Fuzzy Logic Processing
Human traders use implicit learning to identify patterns in price data. This occurs when
traders are repeatedly exposed to certain complex price patterns, and eventually
develop a personal understanding for the pattern even though the pattern and predictive
feeling cannot be verbally explained in human language.

It is proven that fuzzy logic systems can be effectively used for decision-making support
of trading processes by reproducing the intuitiveness of human traders.

The Modulus APR fuzzy logic processor identifies patterns as human traders would.
APR features several optimization parameters, which allow you to fine tune the fuzzy
logic pattern identification process based on your own preferences.

Pattern-Based Alerts and Back Testing
APR can be used as a basis for creating real-time pattern alerts or back testing
strategies based on pre-defined or custom pattern definitions. APR ships with several
pre-defined patterns such as Channels, Double Bottoms, Double Tops, Flags, Head &
Shoulders, Pennants, Trend, Triangles, Triple Bottoms, Triple Tops, Wedges and other
patterns. Custom patterns can be created using the supplied pattern designer utility,
which you may deploy to your end users.

Prerequisites

APR is compatible with all versions of Windows and requires only 4MB of free RAM.
The APR designer utility (optional) requires the Microsoft .NET 3.5 framework. A working
knowledge of C# 2008 or later and WPR is required for working with the designer utility
source code. A working knowledge of C programming is required to work with the source
code to the APR library.

Introduction

APR may be used with any Windows programming language, including VB6, VB.Net,
C#, VC++, Delphi, etc. ModulusAPR.dll is a standard Win32 dynamic link library (not a
COM library). No COM registration is required for installation.

After installing APR, example projects may be found on the Windows Start menu in the
All Programs \ “Modulus Financial Engineering\Advanced Pattern Recognition\” folder.

APR Pattern Designer Utility

The APR Pattern Designer is a utility application that allows you to draw pattern
templates and save them in XML format. You may then pass the XML template files to
the APR library in order to scan for the patterns that you have designed.

The APR Pattern Designer requires the Microsoft .NET 3.5 framework to run. Windows
Vista provides this framework by default. If you do not have the .NET 3.5 framework on
your computer, you must install it prior to running the APR Pattern Designer application.

The APR Pattern Designer may be distributed with your software application if you have
purchased a distributable license of the APR library. You may not, however, distribute
the APR DLL source code or APR designer source code.

Creating a Pattern

To being, click the Draw High button on the toolbar. This will
enable the drawing tool. You may then create the upper
boundary of your pattern by left clicking on the chart to create
points.

You may create as many points as necessary to generate the
pattern. You may draw anywhere within the drawing area.

Right click to finish the upper line drawing then select the
Draw Low button to begin drawing the lower boundary.

If you make a mistake while drawing the pattern, you may click the “Clear” button on the
toolbar to clear the line drawings and start over.

Modifying Pattern Properties

You may modify the fuzzy logic parameters as needed after the pattern has been drawn.
The default parameters may be used for most patterns, and should only be changed
when absolutely necessary. These are considered “advanced” settings.

APR Fuzzy Logic Parameters

Before describing the fuzzy logic parameters and their meanings, it is important to
understand how APR works.

APR scans through data by paging through incremental “windows”. A window is defined
by the Max Bars and Min Bars parameters. For example, if you specify 50 for the
maximum number of bars and 10 for the minimum number of bars, APR will search for
patterns consisting of a number of records up to 40 bars in length. More weight is given
to patterns containing the most number of bars. The minimum value for Min Bars is 5.

Each window of data is passed through a fuzzy logic filter. It is beyond the scope of this
document to explain how the filter works. The filter is based on our patent-pending fuzzy
logic algorithm, and may be reviewed in the DLL source code under a separate license.

Ranking Values
APR returns a ranking value for each pattern that is identified. This value ranges
between 0 and 1, with 1 being a perfect pattern and zero being no match at all.
Values above 0.6 seldom occur. Most ranking values are between 0.35 and 0.6.

Max Bars (10 to 1000, default 50)
Maximum number of bars in the pattern window. Processing time increases with the
window size (Max Bars – Min Bars). Higher rankings are given to patterns containing the
largest number of records. This value cannot be less than Min Bars.

Min Bars (5 to 990, default 1)
Minimum number of bars in the pattern window. Processing time increases with the
window size (Max Bars – Min Bars). Higher rankings are given to patterns containing the
largest number of records. This value cannot exceed Max Bars - 10.

Fitness Threshold (0 to 0.95, default 0.3)
Filters patterns that have a fitness ranking below the specified value. For example, if a
rank is 0.3 and Fitness Threshold is 0.31, the pattern will not be added to the results list.

Breakout Error Threshold (0 to 1, default 0.3)
This threshold value filters patterns if any bar is more than n-% outside the pattern
channel. For example, if Breakout Error Threshold is set to 0.5 and any one bar in the
pattern window is over 50% outside the channel, the pattern will not be added to the
results list.

Breakout Error Threshold

Point Breakout Error Threshold (0 to 1, default 0.25)
This threshold value filters patterns if any bar that is within 1 record of a pattern data
point is more than n-% outside the pattern channel. For example, if Point Breakout Error
Threshold is set to 0.5 and any single bar in the pattern window that is within 1 record of
a pattern point is over 50% outside the channel, the pattern will not be added to the
results list.

Point Breakout Error Threshold

Channel Error (0 to 1, default 0.3)
Filters patterns that have an accumulative error of abs(high | low - trend) that is more
than n-% outside this tolerance value.

Channel Error

Point Error
Filters patterns that have an accumulative error of abs(high | low - trend) that is more
than n-% outside this tolerance value near pattern data points.

Point Error

 ModulusAPR.dll – Win32 DLL Documentation

The APR library is extremely simple to use and consists of only ten Win32 API methods.
Please note that the following documentation is considered complete. All functions listed
below are shown in the example projects. Refer to the example projects for clarification.

 SetRecordsCount (RecordCount As Long) As Long
This function must be called prior to calling any other function. Returns -1 it the number
of records are > 1000000 (limit value), otherwise returns the number passed to function.
Also erases all values that may have been previously set by AppendRecord.

 AppendRecord(Date As String, DateLength As Integer, Open As Double, High
As Double, Low As Double, Close As Double, Volume As Long) As Long
Appends records that will be scanned for patterns. Returns -1 if called more than the
RecordCount value set by SetRecordsCount, otherwise returns the number of records
added.

 ScanForPatterns(XmlDefinition As String, LicenseKey As String) As Long
Returns -100 if the license string is incorrect, returns -1 if the xml file can’t be loaded,
otherwise returns the number of patterns that have been identified. Please note, the
license string can be found on the “Downloads & Updates” page of our web site, to the
right of the APR download link. This is the same license key used for the installation.

 StartPatternsIteration()
This function readies the DLL for pattern iteration and must be called prior to calling the
ForEachPattern function. This function returns no value.

 ForEachPattern() As Long
Iterates through each pattern that has been identified after calling StartPatternsIteration.
Returns1 if there are patterns to iterate, otherwise 0 if there are no patterns to iterate.

 StartPatternValuesIteration(PatternIndex As Long) As Long
This pattern readies the DLL for record iteration through a specified pattern and must be
called prior to calling the ForEachPatternValue function. Returns -1 if an incorrect
pattern index is passed, otherwise returns 0. Please note that PatternIndex is 0-based.

 ForEachPatternValue(Upper as Double, Lower As Double) as Long
Iterates through each record in the specified pattern after calling
StartPatternValuesIteration. Returns 1 if there are records to iterate, otherwise 0 if there
are no more records to iterate.

 GetXmlStringValue(ValueName As String, ByRef Value As String,
ValueBufferLength As Long)
Returns a string value by reference pointer based on a key value name.
ValueBufferLength is the buffer length of the Value string and must be > 0. Supported
key value names for ValueName are “Title” and “Notes”. These values are set by the
pattern designer utility.

 GetXmlIntegerValue(ValueName As String) As Long

Returns a long value based on a key value name. Returns -1 if an invalid value name is
passed. Supported key value names for ValueName are “MaxBars” and “MinBars”.
These values are set by the pattern designer utility.

 GetXmlDoubleValue(ValueName As String) As Double
Returns a double value based on a key value name. Returns -1 if an invalid value name
is passed. Supported key value names for ValueName are “FitnessThreshold”,
“BreakoutErrorThreshold”, “PointBreakoutErrorThreshold”, “ChannelError” and
“PointError”. These values are set by the pattern designer utility.

Technical Support

Developer support is provided for API calls, example projects, questions regarding the
Designer utility and the Designer utility source code (if a source code license has been
purchased). Support is not provided for individual patterns, template settings, etc. (end-
user technical support). For developer technical support, email support@modulusfe.com

	Introduction
	APR Pattern Designer Utility
	Creating a Pattern
	Min Bars (5 to 990, default 1)
	Fitness Threshold (0 to 0.95, default 0.3)
	Breakout Error Threshold (0 to 1, default 0.3)
	Channel Error (0 to 1, default 0.3)
	Technical Support

