

Service Disclaimer
This manual was written for use with the TradeScript™ language. This manual and the product described in
it are copyrighted, with all rights reserved. This manual and the TradeScript™ outputs (charts, images, data,
market quotes, and other features belonging to the product) may not be copied, except as otherwise
provided in your license or as expressly permitted in writing by Modulus Financial Engineering, Inc. Export of
this technology may be controlled by the United States Government. Diversion contrary to U.S. law
prohibited. Copyright © 2006 by Modulus Financial Engineering, Inc. All rights reserved. Modulus Financial
Engineering and TradeScript™ are registered trademarks of Modulus Financial Engineering, Inc. in the
United States and other countries. All other trademarks and service marks are the property of their
respective owners. Use of the TradeScript™ product and other services accompanying your license and its
documentation are governed by the terms set forth in your license. Such use is at your sole risk. The service
and its documentation (including this manual) are provided "AS IS" and without warranty of any kind and
Modulus Financial Engineering, Inc. AND ITS LICENSORS (HEREINAFTER COLLECTIVELY REFERRED
TO AS “MFE”) EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE AND AGAINST INFRINGEMENT. MFE DOES NOT WARRANT THAT THE
FUNCTIONS CONTAINED IN THE SERVICE WILL MEET YOUR REQUIREMENTS, OR THAT THE
OPERATION OF THE SERVICE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN
THE SERVICE OR ERRORS IN THE DATA WILL BE CORRECTED. FURTHERMORE, MFE DOES NOT
WARRANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE
USE OF THE SERVICE OR ITS DOCUMENTATION IN TERMS OF THEIR CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE. NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY MFE
OR A MFE AUTHORIZED REPRESENTATIVE SHALL CREATE A WARRANTY OR IN ANY WAY
INCREASE THE SCOPE OF THIS WARRANTY. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY. UNDER NO
CIRCUMSTANCES INCLUDING NEGLIGENCE, SHALL MFE, ITS LICENSORS OR THEIR DIRECTORS,
OFFICERS, EMPLOYEES OR AGENTS BE LIABLE FOR ANY INCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS, LOSS OF PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION AND THE LIKE) ARISING OUT OF
THE USE OR INABILITY TO USE THE SERVICE OR ITS DOCUMENTATION, EVEN IF MFE OR A MFE
AUTHORIZED REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY
NOT APPLY. In no event shall MFE’s total liability to you for all damages, losses, and causes of action
(whether in contract, tort, including negligence, or otherwise) exceed the amount paid for the product and its
documentation.

Trading Disclaimer
No offer or solicitation to buy or sell securities, securities derivative or futures products of any kind, or any
type of trading or investment advice, recommendation or strategy, is made, given or in any manner
endorsed by MFE or any of its affiliates. Past performance, whether actual or indicated by historical tests of
strategies, is no guarantee of future performance or success. Active trading is generally not appropriate for
someone of limited resources, limited investment or trading experience, or low-risk tolerance, or who does
not have capital to risk. There is a risk of loss in stock and futures trading. Market data may be delayed or
unavailable at times due to system and software errors, Internet traffic, outages and other factors. Trading
carries a high level of risk and may not be suitable for all investors. There is a possibility that you may
sustain a loss equal to or greater than your entire investment; therefore, you should not invest or risk money
that you cannot afford to lose. You should be aware of all risks associated with trading.

Acknowledgments
TradeScript™ was designed and developed by Richard Gardner, William Corbin, Eugen Rata, Tom Wong,
Meghla Harlalka, Adreian Sandor, Tim Jarquin, Svetoslav Chekanov, Dmitry Kudryavtsev and Tigran
Najaryan.

Special Thanks
Thanks to all the users and testers of TradeScript™, whose suggestions have made it a much better
programming language than it otherwise would have been.

Contents

Chapter 1
Introducing TradeScript™

Prerequisites... 4

How This Guide Is Organized... 4

The TradeScript™ Programming Language ... 5

Introduction: Important Concepts.. 5

Boolean Logic ... 6

Program Structure... 6

Functions .. 7

Vector Programming ... 8

The REF Function ... 9

The TREND Function.. 10

Price Gaps and Volatility ... 11

Fundamental Analysis... 12

Technical Analysis .. 12

Crossovers.. 13

Sectors and Industries .. 14

Key Reversal Script... 14

Linking Scripts..Error! Bookmark not defined.

Chapter 2
Primitive Functions & Operators

Primitives .. 16
Conditional “IF” Function... 17

LOOP Function ... 17

COUNTIF .. 19

LASTIF.. 19

SUMIF... 19

SUM.. 20

AVG .. 20

MAX .. 20

MIN ... 21

MAXOF ... 21

MINOF .. 21

REF... 22

TREND.. 22

CROSSOVER ... 22

Math Functions ... 23

ABS... 23

SIN.. 23

COS .. 24

TAN... 24

ATN... 24

EXP... 24

LOG .. 25

LOG10 .. 25

RND .. 25

Operators.. 26

Equal (=) ... 26

Greater Than (>) ... 26

Less Than (<).. 26

Greater Than Or Equal To (>=) ... 27

Less Than Or Equal To (<=) ... 27

Not Equal (<> or !=) .. 27

AND .. 28

OR... 28

XOR .. 29

NOT .. 29

EQV .. 29

MOD.. 30

Chapter 3
Technical Analysis Functions

Moving Averages .. 32

Simple Moving Average .. 32

Exponential Moving Average .. 33

Time Series Moving Average .. 33

Variable Moving Average .. 34

Triangular Moving Average ... 34

Weighted Moving Average .. 35

Welles Wilder Smoothing (Moving Average)... 35

Volatility Index Dynamic Average - VIDYA (Moving Average)..................... 36

Linear Regression Functions .. 37

R2 (R-Squared) ... 37

Slope... 37

Forecast .. 38

Intercept .. 38

Band Functions... 39

Bollinger Bands... 39

Moving Average Envelope .. 40

Prime Number Bands.. 40

Oscillator Functions .. 41

Momentum Oscillator .. 41

Chande Momentum Oscillator... 42

Volume Oscillator .. 42

Price Oscillator .. 43

Detrended Price Oscillator .. 43

Prime Number Oscillator ... 44

Fractal Chaos Oscillator.. 44

Rainbow Oscillator .. 45

TRIX.. 45

Vertical Horizontal Filter .. 46

Ease Of Movement ... 46

Wilder’s Directional Movement System... 47

True Range ... 47

Williams’ %R ... 48

Williams’ Accumulation / Distribution... 48

Chaikin Volatility.. 49

Aroon .. 49

Moving Average Convergence / Divergence (MACD) 50

High Minus Low... 50

Stochastic Oscillator.. 51

Index Functions .. 52

Relative Strength Index... 52

Mass Index.. 52

Historical Volatility Index ... 53

Money Flow Index ... 53

Chaikin Money Flow Index .. 54

Comparative Relative Strength Index.. 54

Price Volume Trend .. 55

Positive Volume Index... 55

Negative Volume Index ... 56

On Balance Volume .. 56

Performance Index.. 57

Trade Volume Index.. 57

Swing Index .. 58

Accumulative Swing Index .. 58

Commodity Channel Index (CCI) .. 59

Parabolic Stop and Reversal (Parabolic SAR) .. 59

Stochastic Momentum Index... 60

General Indicator Functions.. 61

Median Price ... 61

Typical Price.. 61

Weighted Close... 62

Price Rate of Change.. 62

Volume Rate of Change.. 63

Highest High Value ... 63

Lowest Low Value... 64

Standard Deviations.. 64

Japanese Candlestick Patterns .. 66

Chapter 4
Trading System Examples & Techniques

Trading Systems... 68

Moving Average Crossover System.. 69

Moving Average Crossover System Script.. 70

Price Gap System... 71

Price Gap Script .. 72

Bollinger Bands System.. 73

Bollinger Bands Script... 74

Historical Volatility and Trend ... 75

Historical Volatility and Trend Script.. 76

Parabolic SAR / MA System ... 77

Parabolic SAR / MA Script .. 78

MACD Momentum System ... 79

MACD Momentum Script .. 80

Narrow Trading Range Breakout .. 81

Narrow Trading Range Script.. 81

Fundamental Trading System... 82

Fundamental Trading System Script ... 83

Outside Day System... 84

Outside Day Script .. 85

Japanese Candlestick Engulfing Line System .. 86

Chapter 5
Primitive Variables, Constants, and Flags

Primitive Types ... 87

Price Vectors... 87

Fundamental Variables ... 87

Basic Constants .. 88

Back Testing Flags.. 88

Moving Average Constants ... 89

Trend Constants (used by TREND function)... 89

Points or Percent Constants (used by indicators) 89

Candlestick Pattern Constants.. 89

Sector and Industry Constants ... 93

Sector Constants... 93

Industry Constants .. 95

Troubleshooting.. 98

Where do I go for more help? ... 99

Index.. 100

4

1 Chapter 1

 Introducing TradeScript™

Prerequisites

A basic understanding of technical analysis is the only prerequisite for using this
programming guide.

Please note that TradeScript™ may be bundled or implemented into 3rd party
software. Please refer to your trading software vendor for technical support.

How This Guide Is Organized

The first section of this guide contains short examples that demonstrate how to
perform common, basic tasks such as identifying securities within specific price
range, increasing in volatility, crossing over an indicator, and so forth. You can
cut and paste many of these examples right into the TradeScript™ programming
area in your software.

The last section of this guide contains a reference of functions, properties, and
constants supported by the TradeScript™ language as well as hands-on trading
system examples. This method of organization allows the beginning programmer
to see results immediately while learning at his or her own pace.

Introducing TradeScript™

5

The TradeScript™ Programming Language

TradeScript™ is the engine that drives the scripting language in your trading
software. It is a non-procedural scientific vector programming language that was
designed specifically for developing trading systems. A script is simply a set of
instructions that tell the TradeScript™ engine to do something useful, such as
provide an alert when the price of one stock reaches a new high, crosses over a
moving average, or drops by a certain percentage. There are many uses.

Introduction: Important Concepts

TradeScript™ is a powerful and versatile programming language for traders.
The language provides the framework required to build sophisticated trading
programs piece by piece without extensive training or programming experience.

The following script is a very simple example that identifies markets that are
trading higher than the opening price:

LAST > OPEN

It almost goes without saying that the purpose of this script is to identify when the
last price is trading higher than the open price… it is nearly as plain as English.

Just as a spoken language gives you many ways to express each idea, the
TradeScript™ programming language provides a wide variety of ways to program

Introducing TradeScript™

6

a trading system. Scripts can be very simple as just shown or extremely complex,
consisting of many hundreds of lines of instructions. But for most systems, scripts
usually consist of just a few lines of code.

The examples outlined in the first section of this guide are relatively short and
simple but provide a foundation for the development of more complex scripts.

Boolean Logic

The scripts shown in this first section may be linked together using Boolean logic
just by adding the AND or the OR keyword, for example…

Script 1 evaluates to true when the last price is higher than the open price:
LAST > OPEN

Script 2 evaluates to true when volume is two times the previous day’s volume:
VOLUME > REF(VOLUME, 1) * 2

You can aggregate scripts so that your script returns results for securities that
are higher than the open and with the volume two times the previous volume:

LAST > OPEN AND VOLUME > REF(VOLUME, 1) * 2

Likewise, you can change the AND into an OR to find securities that are either
trading higher than the open or have a volume two times the previous volume:

LAST > OPEN OR VOLUME > REF(VOLUME, 1) * 2

Once again, the instructions are nearly is plain as the English language. The use
of Boolean logic with the AND and OR keywords is a very important concept that
is used extensively by the TradeScript™ programming language.

Program Structure

It does not matter if your code is all on a single line or on multiple lines. It is often
easier to read a script where the code is broken into multiple lines. The following
script will work exactly as the previous example, but is somewhat easier to read:

LAST > OPEN OR
VOLUME > REF(VOLUME, 1) * 2

Introducing TradeScript™

7

It is good practice to structure your scripts to make them as intuitive as possible
for future reference. In some cases it may be useful to add comments to a very
complex script. A comment is used to include explanatory remarks in a script.

Whenever the pound sign is placed at the beginning of a line, the script will
ignore the words that follow. The words will only serve as a comment or note to
make the script more understandable:

Evaluates to true when the last
price is higher than the open or the
volume is 2 X’s the previous volume:

LAST > OPEN OR
VOLUME > REF(VOLUME, 1) * 2

The script runs just as it did before with the only difference being that you can
more easily understand the design and purpose of the script.

Functions

The TradeScript™ language provides many built-in functions that make
programming easier. When functions are built into the core of a programming
language they are referred to as primitives. The TREND function is one example:

TREND(CLOSE, 30) = UP

In this example, the TREND function tells TradeScript™ to identify trades where
the closing price is in a 30-day uptrend.

The values that are contained inside a function (such as the REF function or the
TREND function) are called arguments. Here there are two arguments in the
TREND function. Argument #1 is the closing price, and argument #2 is 30, as in
“30 days” or “30 periods”.

Only one of two things will occur if you use a function incorrectly… TradeScript™
will automatically fix the problem and the script will still run, or TradeScript™ will
report an error, tell you what’s wrong with the script, and then allow you to fix the
problem and try again.

In other words, user input errors will never cause TradeScript™ to break or return
erroneous results without first warning you about a potential problem.

Introducing TradeScript™

8

Let’s take CLOSE out of the TREND function and then try to run the script again:

TREND(30) = UP

The following error occurs:

Error: argument of 'TREND' function not optional. Click here for help.

We are given the option to fix the script and try again. The TREND hyperlink
provides help for the TREND function by listing the required arguments.

Vector Programming

Vector programming languages (also known as array or multidimensional
languages) generalize operations on scalars to apply transparently to vectors,
matrices, and higher dimensional arrays.

The fundamental idea behind vector programming is that operations apply at
once to an entire set of values (a vector or field). This allows you to think and
operate on whole aggregates of data, without having to resort to explicit loops of
individual scalar operations.

As an example, to calculate a simple moving average based on the median price
of a stock over 30 days, in a traditional programming language such as BASIC
you would be required to write a program similar to this:

For each symbol

For bar = 30 to max
 Average = 0

For n = bar - 30 to bar
 median = (CLOSE + OPEN) / 2

 Average = Average + median
Next
MedianAverages(bar) = Average / 30

Next bar
Next symbol

Nine to ten lines of code would be required to create the “MedianAverages”
vector. But with TradeScript™, you can effectively accomplish the same thing
using only one line:

SET MedianAverage = SimpleMovingAverage((CLOSE + OPEN) / 2, 30)

And now MedianAverage is actually a new vector that contains the 30-period
simple moving average of the median price of the stock at each point.

It is not uncommon to find array programming language “one-liners” that require
more than a couple of pages of BASIC, Java or C++ code.

Introducing TradeScript™

9

The REF Function

At this point you may be wondering what “REF” and “TREND” are. These are two
of the very useful primitives that are built into the TradeScript™ language.

The REF function is used whenever you want to reference a value at any specific
point in a vector. Assume the MedianAverage vector contains the average
median price of a stock. In order to access a particular element in the vector
using a traditional programming language, you would write:

SET A = MedianAverage[n]

Using TradeScript™ you would write:

SET A = REF(MedianAverage, n)

The main difference other than a variation in syntax is that traditional languages
reference the points in a vector starting from the beginning, or 0 if the vectors are
zero-based. TradeScript™ on the other hand references values backwards, from
the end. This is most convenient since the purpose of TradeScript™ is of course,
to develop trading systems. It is always the last, most recent value that is of most
importance. To get the most recent value in the MedianAverage vector we could
write:

SET A = REF(MedianAverage, 0)

Which is the same as not using the REF function at all. Therefore the preferred
way to get the last value (the most recent value) in a vector is to simply write:

SET A = MedianAverage

The last value of a vector is always assumed when the REF function is absent.
To get the value as of one bar ago, we would write:

SET A = REF(MedianAverage, 1)

Or two bars ago:

SET A = REF(MedianAverage, 2)

Introducing TradeScript™

10

The TREND Function

Stock traders often refer to “trending” as a state when the price of a stock has
been increasing (up-trending) or decreasing (down-trending) for several days,
weeks, months, or years. The typical investor or trader would avoid opening a
new long position of a stock that has been in a downtrend for many months.

TradeScript™ provides a primitive function aptly named TREND especially for
detecting trends in stock price, volume, or indicators:

TREND(CLOSE, 30) = UP

This tells TradeScript™ to identify trades where the closing price is in a 30-day
uptrend. Similarly, you could also use the TREND function to find trends in
volume or technical indicators:

the volume has been
in a downtrend for at least 10 days:
TREND(VOLUME, 10) = DOWN

the 14-day CMO indicator
has been up-trending for at least 20 days:
TREND(CMO(CLOSE, 14), 20) = UP

It is useful to use the TREND function for confirming a trading system signal.
Suppose we have a trading system that buys when the close price crosses
above a 20-day Simple Moving Average. The script may look similar to this:

Gives a buy signal when the close price crosses above the 20-day SMA
CROSSOVER(CLOSE, SimpleMovingAverage(CLOSE, 20)) = TRUE

It would be helpful in this case to narrow the script down to only the securities
that have been in a general downtrend for some time. We can add the following
line of code to achieve this:

AND TREND(CLOSE, 40) = DOWN

TREND tells us if a vector has been trending upwards, downwards, or sideways,
but does not tell us the degree of which it has been trending. We can use the
REF function in order to determine the range in which the data has been
trending. To find the change from the most current price and the price 40 bars
ago, we could write:

SET A = LAST - REF(CLOSE, 40)

Introducing TradeScript™

11

Price Gaps and Volatility

Although the TREND function can be used for identifying trends and the REF
function can be used for determining the degree in which a stock has moved, it is
often very useful to identify gaps in prices and extreme volume changes, which
may be early indications of a change in trend. We can achieve this by writing:

Returns true when the price has gapped up
LOW > REF(HIGH, 1)

Or:

Returns true when the price has gapped down
HIGH < REF(LOW, 1)

You can further specify a minimum percentage for the price gap:

Returns true when the price has gapped up at least 1%
LOW > REF(HIGH, 1) * 1.01

And with a slight variation we can also the volume is either up or down by a large
margin:

the volume is up 1000%
VOLUME > REF(VOLUME, 1) * 10

Or by the average volume:

the volume is up 1000% over average volume
VOLUME > SimpleMovingAverage(VOLUME, 30) * 10

We can also measure volatility in price or volume by using any one of the built-in
technical indicators such as the Volume Oscillator, Chaikin Volatility Index,
Coefficient of Determination, Price Rate of Change, Historical Volatility Index,
etc. These technical indicators are described in chapter 3.

Introducing TradeScript™

12

Fundamental Analysis

Many investors and traders rely upon fundamental information such as the price-
to-earnings (PE) ratio, dividend, and yield. This information can be used as part
of your trading system simply by including the option in your script:

the PE ratio is between 10 and 15
PE_RATIO >= 10 AND PE_RATIO <= 15

Valid options are:

PE_RATIO
DIVIDEND
YIELD
52_WEEK_HIGH
52_WEEK_LOW
ALL_TIME_LOW
ALL_TIME_HIGH

These and other primitive variables are covered in chapter 5.

Technical Analysis

TradeScript™ provides many built-in technical analysis functions. Using only a
single line of code you can calculate functions such as Moving Averages,
Bollinger Bands, Japanese Candlesticks, and so on. A complete list of technical
analysis functions is covered in chapter 3.

The following is a simple example of how to use one of the most common
technical analysis functions, the simple moving average:

LAST > SimpleMovingAverage(CLOSE, 20)

The script will the last price is over the 20-day moving average of the close price.

The CLOSE variable is actually a vector of closing prices, not just the most
recent close price. You can use the OPEN, HIGH, LOW, CLOSE and VOLUME
vectors to create your own calculated vectors using the SET keyword:

SET Median = (CLOSE + OPEN) / 2

This code creates a vector containing the median price for each trading day.

Introducing TradeScript™

13

We can use the Median vector inside any function that requires a vector:

LAST > SimpleMovingAverage(Median, 20)

And this evaluates to true when the last price is greater than a 20-day moving
average of the median price.

Because functions return vectors, functions can also be used as valid arguments
within other functions:

LAST >
SimpleMovingAverage(SimpleMovingAverage(CLOSE, 30), 20)

This evaluates to true when the last price is greater than the 20-day moving
average of the 30-day moving average of the close price.

Crossovers

You may be familiar with the term “crossover”, which is
what happens when one series crosses over the top of
another series as depicted in the image on the right.

Many technical indicators such as the MACD for
example, have a “signal line”. A buy or sell signal is
generated when the signal line crosses over or under
the technical indicator.

The CROSSOVER function helps you one series has
crossed over another.

For example, we can find the exact point in time when
one moving average crossed over another by using the CROSSOVER function:

SET MA1 = SimpleMovingAverage(CLOSE, 28)
SET MA2 = SimpleMovingAverage(CLOSE, 14)

CROSSOVER(MA1, MA2) = TRUE

The script above will evaluate to true when the MA1 vector most recently crossed
over the MA2 vector. And we can reverse the script to the MA1 vector crossed
below the MA2 vector:

CROSSOVER(MA2, MA1) = TRUE

Introducing TradeScript™

14

Sectors and Industries

Systems can be narrowed down to a specific sector or industry by setting the
global SECTOR and/or INDUSTRY flags. To filter for securities in a specific
industry and sector, you can write:

SET SECTOR = TECHNOLOGY
SET INDUSTRY = SEMICONDUCTORS
LAST > 0

A complete list of all available sectors & industries can be found in the Sectors &
Industries section of chapter 5.

Key Reversal Script

Finally, before we move into the technical reference section of this guide let’s
create a script that finds Key Reversals, so that you can see firsthand how
TradeScript™ can be used to create trading systems based upon complex rules.

The definition of a Key Reversal is that after an uptrend, the open must be above
the previous close, the most current bar must make a new high, and the last
price must be below the previous low. Let’s translate that into script form:

First make sure that the stock is in an uptrend
TREND(CLOSE, 30) = UP

The open must be above yesterday’s close
AND OPEN > REF(CLOSE, 1)

Today must be making a new high
AND HIGH >= ALL_TIME_HIGH

And the last price must be below yesterday’s low
AND LAST < REF(LOW, 1)

Ironically, the script minus comments is actually shorter than the English
definition of this trading system. Key Reversals do not occur frequently but they
are very reliable when they do occur. You can experiment by removing the line
AND HIGH >= ALL_TIME_HIGH, or you can replace it with other criteria. This script
can also be reversed:

First make sure that the stock is in a downtrend
TREND(CLOSE, 30) = DOWN

The open must be below yesterday’s close
AND OPEN < REF(CLOSE, 1)

Today’ must be making a new low
AND LOW <= ALL_TIME_LOW

Introducing TradeScript™

15

And the last price must be above yesterday’s high
AND LAST > REF(HIGH, 1)

Again, the signal seldom occurs but is very reliable when it does.

16

 Chapter 2

 Primitive Functions & Operators

2

Primitives

This chapter covers the built-in functions of TradeScript™, also known as
primitives. These important functions define the TradeScript™ programming
language and provide the basic framework required to build complex trading
systems from the ground up.

Literally any type of trading system can be developed using the TradeScript™
programming language with minimal effort. If a system can be expressed in
mathematical terms or programmed in any structured, procedural language such
as C++, VB, or Java for example, you can rest assured that the same formulas
can also be programmed using the TradeScript™ programming language.

Sometimes technical analysis formulas can be very complex. For example,
technical analysis functions exist that require recursive calculations and
complicated IF-THEN-ELSE structures as part of their formula. These complex
trading systems are traditionally developed in a low level programming language.

This chapter outlines how TradeScript™ can be used to perform these same
calculations in a much simpler way by means of vector operations and simulated
control structure.

Primitive Functions & Operators

17

Conditional “IF” Function

IF(Condition, True part, False part)

The conditional “IF” function allows you to design complex Boolean logic filters. If
you paste the following script into the Script area in your trading software
application, you will see a column of numbers that oscillate between 1 and -1,
depending on when the closing price is greater than the opening price:

SET A = IF(CLOSE > OPEN, 1, -1)

The first argument of the “IF” function is a logical test. The second argument is
the value that will be used if the condition evaluates to TRUE. Conversely, the
third argument is the value that will be used if the condition evaluates to FALSE.
The logical test may be any value or expression that can be evaluated to TRUE
or FALSE. For example, CLOSE = OPEN is a logical expression; if the close
price is the same as the opening price, the expression evaluates to TRUE.
Otherwise, the expression evaluates to FALSE.

LOOP Function

LOOP(Vector1, Vector2, Offset1, Offset2, Operator)

LOOP provides simulated control structure by means of a single function call.
Consider the following:

SET X = CLOSE
SET X = REF(X, 1) + X

This script simply ads the previous close to the most current close. REF(X, 1) is
evaluated once. This is expected behavior for a vector programming language;
vectors are calculated independently in a stepwise fashion and are not recursive.

Now by changing CLOSE to 0, logically we would expect X to equal the previous
X value plus one, and therefore expect REF(X, 1) to be evaluated once for each
record in the vector:

SET X = 0
SET X = REF(X, 1) + X

Although we are looking at the exact same formula, because we are initializing X
with a scalar and X is not related to any existing vector we would now expect X to
be calculated as a series: 1,2,3,4,5,6,...n

We are now exceeding the limits of a vector programming language by requiring
control structure.

Primitive Functions & Operators

18

Anytime we assign a variable to itself such as SET X = F(X) we are expecting F(X)
to be recursive. In the first example we write SET X = CLOSE. CLOSE is a variable,
not a function and does not have any relationship with X. Our expectations
change when we initialize X with anything other than an existing vector.

The LOOP function overcomes this inherent limitation by simulating a structured
programming construct, the for-loop iteration:

LOOP(Vector1, Vector2, Offset1, Offset2, Operator)

Vector1 is the vector to initialize the calculation from. Offset1 is the offset where
values are referenced in Vector1 for the incremental calculation, and Offset2 is the
offset where values are referenced from in Vector2.

Example 1:

X (Vector1) is a series from 5.25 to 11.25.
If we write LOOP(X, 2, 1, 0, MULTIPLY)
the vector returned will contain values
initialized by X, offset by 1 and multiplied by 2:

Example 2:

In the case of SET X = REF(X, 1), Vector1 is X and Vector2 is 1. Since we’re adding
the value of 1 (not a vector) to X in the following example, Offset2 is set to zero:

SET X = LOOP(X, 1, 1, 0, ADD)

And now X contains the series 1,2,3,4,5,6,...n

Example 3:

SET X = REF(CLOSE,1)
SET Y = (REF(Y, 3) - X) * 2

Because Y requires control structure we must instead write:

SET X = REF(CLOSE,1)
SET Y = LOOP(Y, X, 3, 0, SUBTRACT) * 2

We could reduce that to:

SET Y = LOOP(Y, CLOSE, 3, 1, SUBTRACT) * 2

Valid operators are ADD, SUBTRACT, MULTIPLY and DIVIDE

X
5.25
6.25
7.25
8.25
9.25

10.25
11.25

LOOP
5.25
10.5
21
42
84

168
336

Primitive Functions & Operators

19

COUNTIF

COUNTIF(Condition)

Returns a vector representing the total number of times the specified condition
evaluated to TRUE.

Example:

COUNTIF(CROSSOVER(SimpleMovingAverage(CLOSE, 14), CLOSE))

The script returns a vector with increasing values expressing the number of times
the 14-day Simple Moving Average crossed over the closing price.

LASTIF

LASTIF(Condtion)

Similar to COUNTIF, except LASTIF returns a vector containing the number of
days since the last time the specified condition evaluated to TRUE. The count is
reset to zero each time the condition evaluates to TRUE.

Example:

LASTIF(CLOSE < REF(CLOSE, 1))

The script returns a vector that increases in value for each bar where the closing
price was not less than the previous closing price. When the condition evaluates
to TRUE, meaning the closing price was less than the previous closing price, the
reference count is reset to zero.

SUMIF

SUMIF(Condtion, Vector)

Last in the “IF” function lineup is the SUMIF function. This function outputs a
running sum of all values in the supplied Vector wherever the supplied Condition
evaluates to TRUE.

For example if we wanted a vector containing the sum of volume for all the days
where the closing price closed up 5%, we could write:

SUMIF(CLOSE > REF(CLOSE,1) * 1.05, VOLUME)

The result will be a vector containing a running sum of volume for each day
where the closing price closed up at least 5%.

Primitive Functions & Operators

20

SUM

SUM(Vector, Periods)

The SUM function (not to be confused with the SUMIF function) outputs a vector
containing a running sum, as specified by the Periods argument.

Example:

SUM(CLOSE, 10)

The script returns a vector of sums based on a 10-period window.

AVG

AVERAGE(Vector, Periods)
AVG(Vector, Periods)

Returns a vector containing a running average, as specified by the Periods
argument. The AVERAGE function can also be referenced by AVG for short.

Example:

AVERAGE(CLOSE, 10)
AVG(CLOSE, 10)

Both scripts return a vector of averages based on a 10- period window.

MAX

MAX(Vector, Periods)

Returns a vector containing a running maximum, as specified by the Periods
argument. The values represent the maximum value for each window.

Example:

MAX(CLOSE, 10)

Returns a vector of maximum values based on a 10- period window.

Primitive Functions & Operators

21

MIN

MIN(Vector, Periods)

Returns a vector containing a running minimum, as specified by the Periods
argument. The values represent the minimum value for each window.

Example:

MIN(CLOSE, 10)

Returns a vector of minimum values based on a 10- period window.

MAXOF

MAXOF(Vector1, Vector2, [Vector3]…[Vector8])

Returns a vector containing a maximum value of all specified vectors, for up to
eight vectors. Vector1 and Vector2 are required and vectors 3 through 8 are
optional.

Example:

MAXOF(CLOSE, OPEN)

Returns a vector containing the maximum value for each bar, which is either the
opening price or the closing price in this example.

MINOF

MINOF(Vector1, Vector2, [Vector3]…[Vector8])

Returns a vector containing a minimum value of all specified vectors, for up to
eight vectors. Vector1 and Vector2 are required and vectors 3 through 8 are
optional.

Example:

MINOF(CLOSE, OPEN)

Returns a vector containing the minimum value for each bar, which is either the
opening price or the closing price in this example.

Primitive Functions & Operators

22

REF

REF(Vector, Periods)

By default all calculations are performed on the last, most recent value of a
vector. The following script evaluates to true when the last open price (the
current bar’s open price) is less than $30:

OPEN < 30

OPEN is assumed to be the current bar’s open by default. You can reference a
previous value of a vector by using the REF function:

REF(OPEN, 1) < 30

And now the script will previous bar’s open price was less than $30. The number
1 (the second argument) tells the REF function to reference values as of one bar
ago. To reference values two bars ago, simply use 2 instead of 1. The valid
range for the Periods argument is 1 - 250 unless otherwise noted.

TREND

TREND(Vector)

The TREND function can be used to determine if data is trending upwards,
downwards, or sideways. This function can be used on the price (open, high, low,
close), volume, or any other vector. The TREND function returns a constant of
either UP, DOWN or SIDEWAYS. Example:

TREND(CLOSE) = UP AND TREND(VOLUME) = DOWN

TREND is often the first function used as a means of filtering securities that are
not trending in the desired direction.

CROSSOVER

Many technical indicators such as the MACD for example, have a “signal line”.
Traditionally a buy or sell signal is generated when the signal line crosses over or
under the technical indicator.

The CROSSOVER function helps you one series has crossed over another. For
example, we can find the exact point in time when one moving average crossed
over another by using the CROSSOVER function:

SET MA1 = SimpleMovingAverage(CLOSE, 28)
SET MA2 = SimpleMovingAverage(CLOSE, 14)

Primitive Functions & Operators

23

CROSSOVER(MA1, MA2) = TRUE

The script above will evaluate to true when the MA1 vector most recently crossed
over the MA2 vector. And we can reverse the script to the MA1 vector crossed
below the MA2 vector:

CROSSOVER(MA2, MA1) = TRUE

Math Functions

Note that all math functions return a vector. For example ABS(CLOSE - OPEN)
returns a vector of the ABS value of CLOSE - OPEN (one record per bar). The RND
function returns a vector of random values, one for each bar, and so forth.

ABS

The ABS function returns the absolute value for a number. Negative numbers
become positive and positive numbers remain positive.

Example:

ABS(CLOSE - OPEN)

The script always evaluates to a positive number, even if the opening price is
greater than the closing price.

SIN

The SIN function returns the sine for a number (angle).

Example:

SIN(45)

The script outputs 0.851

Primitive Functions & Operators

24

COS

COS returns the cosine for a number (angle).

Example:

COS(45)

The script outputs 0.525

TAN

The TAN function returns the tangent for a number (angle).

Example:

TAN(45)

The script outputs 1.619

ATN

Returns the arctangent for a number.

Example:

ATN(45)

The script outputs 1.548

EXP

EXP raises e to the power of a number. The LOG function is the reverse of this
function.

Example:

EXP(3.26)

The script outputs 26.28

Primitive Functions & Operators

25

LOG

Returns the natural logarithm of a positive number. The EXP function is the
reverse of this function. Also see LOG10.

Example:

LOG(26.28)

The script outputs 3.26

LOG10

Returns the base 10 logarithm of a positive number. Also see LOG.

Example:

LOG10(26.28)

The script outputs 1.42

RND

The RND function returns a random number from 0 to a maximum value.

Example:

RND(100)

Outputs a random number from 0 to 100.

Primitive Functions & Operators

26

Operators

Equal (=)

The equal operator is used to assign a value to a variable or vector, or to
compare values.

When used for assignment, a single variable or vector on the left side of the =
operator is given the value determined by one or more variables, vectors, and/or
expressions on the right side. Also, the SET keyword must precede the variable
name when the = operator is used for an assignment:

SET A = 123
SET B = 123
A = B = TRUE

Greater Than (>)

The > operator determines if the first expression is greater-than the second
expression.

Example:

SET A = 124
SET B = 123
A > B = TRUE

Less Than (<)

The < operator determines if the first expression is less-than the second
expression.

Example:

SET A = 123
SET B = 124
A > B = TRUE

Primitive Functions & Operators

27

Greater Than Or Equal To (>=)

The >= operator determines if the first expression is greater-than or equal to the
second expression.

Example:

SET A = 123
SET B = 123
A >= B = TRUE

And:

SET A = 124
SET B = 123
A >= B = TRUE

Less Than Or Equal To (<=)

The <= operator determines if the first expression is less-than or equal to the
second expression.

Example:

SET A = 123
SET B = 123
A <= B = TRUE

And:

SET A = 123
SET B = 124
A <= B = TRUE

Not Equal (<> or !=)

Both the != and the <> inequality operators determine if the first expression is not
equal to the second expression.

Example:

SET A = 123
SET B = 124
A != B = TRUE

Primitive Functions & Operators

28

AND

The AND operator is used to perform a logical conjunction on two expressions,
where the expressions are Null, or are of Boolean subtype and have a value of
True or False.

The AND operator can also be used a "bitwise operator" to make a bit-by-bit
comparison of two integers. If both bits in the comparison are 1, then a 1 is
returned. Otherwise, a 0 is returned.

When using the AND to compare Boolean expressions, the order of the
expressions is not important.

Example:

(TRUE = TRUE AND FALSE = FALSE) = TRUE

And:

(TRUE = TRUE AND FALSE = TRUE) = FALSE

OR

The OR operator is used to perform a logical disjunction on two expressions,
where the expressions are Null, or are of Boolean subtype and have a value of
True or False.

The OR operator can also be used a "bitwise operator" to make a bit-by-bit
comparison of two integers. If one or both bits in the comparison are 1, then a 1
is returned. Otherwise, a 0 is returned.

When using the OR to compare Boolean expressions, the order of the
expressions is important.

Example:

(TRUE = TRUE OR TRUE = FALSE) = TRUE

And:

(FALSE = TRUE OR TRUE = FALSE) = FALSE

Primitive Functions & Operators

29

XOR

The XOR operator is used to perform a logical exclusion on two expressions,
where the expressions are Null, or are of Boolean subtype and have a value of
True or False.

The XOR operator can also be used a "bitwise operator" to make a bit-by-bit
comparison of two integers. If both bits are the same in the comparison (both are
0's or 1's), then a 0 is returned. Otherwise, a 1 is returned.

Example:

(TRUE XOR FALSE) = TRUE

And:

(FALSE XOR FALSE) = FALSE

NOT

The NOT operator is used to perform a logical negation on an expression. The
expression must be of Boolean subtype and have a value of True or False. This
operator causes a True expression to become False, and a False expression to
become True.

Example:

NOT (TRUE = FALSE) = TRUE

And:

NOT (TRUE = TRUE) = FALSE

EQV

The EQV operator is used to perform a logical comparison on two expressions
(i.e., are the two expressions identical), where the expressions are Null, or are of
Boolean subtype and have a value of True or False.

The EQV operator can also be used a "bitwise operator" to make a bit-by-bit
comparison of two integers. If both bits in the comparison are the same (both are
0's or 1's), then a 1 is returned. Otherwise, a 0 is returned.

The order of the expressions in the comparison is not important.

Primitive Functions & Operators

30

Example:

TRUE EQV TRUE = TRUE

And:

TRUE EQV FALSE = FALSE

MOD

The MOD operator divides two numbers and returns the remainder. In the
example below, 5 divides into 21, 4 times with a remainder of 1.

Example:

21 MOD 5 = 1

And:

22 MOD 5 = 2

31

 Chapter 3

 Technical Analysis Functions

3

Stocks can be analyzed by means of either fundamental analysis or technical
analysis. Those who analyze securities using fundamental analysis rely on data
such as the profits-to-earnings ratio, yield, and dividend whereas those who
analyze securities using technical analysis look for technical patterns on stock
charts by using calculations referred to as “technical indicators”.

Technical analysis is a form of market analysis that studies the demand and
supply for securities based on volume and price studies. Technicians attempt to
identify price trends in a market using one or more technical indicators.

There are many different types of technical indicators and most are built into the
TradeScript™ programming language as primitive functions, as outlined in this
chapter.

TradeScript™ also allows you to program additional technical indicators by using
a combination of primitive functions listed in Chapter 2 and in this chapter.
Chapter 4 provides examples and techniques for building custom indicators and
trading systems.

This chapter provides a comprehensive list of the primitive technical analysis
functions that are supported by the TradeScript™ programming language.

Please note that many technical indicator names are quite long, therefore
function abbreviations have been conveniently provided wherever possible…

Long name:
SimpleMovingAverage(CLOSE, 30)

Abbreviated name:
SMA(CLOSE, 30)

SMA is the same function as SimpleMovingAverage and both methods work the
same way. Each function provides an abbreviated name if available.

Technical Analysis Functions

32

Moving Averages

Moving averages are the foundation of technical analysis. These functions
calculate averages or variations of averages of the underlying vector. Many
technical indicators rely upon the smoothing features of moving averages as part
of their calculation.

For example, the Moving Average Convergence / Divergence (MACD) indicator
in TradeScript™ allows you to specify the moving average type used within the
indicator’s “Signal Line” calculation.

This section covers the Simple moving average, which is simply an average price
over time, the exponential moving average, which is more complex and places
extra weight on prior values, plus several other types of moving averages like
weighted averages, triangular averages, time series calculations, and so forth.

Each moving average in this section has an associated constant identifier that
can be used as a function argument to specify the type of moving average to use
by any given technical indicator that requires a moving average type.

Simple Moving Average

SimpleMovingAverage(Vector, Periods)
SMA(Vector, Periods)

MA Type Argument ID: SIMPLE

Overview
The Simple Moving Average is simply an average of values over a specified
period of time.

Interpretation
A Moving Average is most often used to average values for a smoother
representation of the underlying price or indicator.

Example
CLOSE > SMA(CLOSE, 30)

Evaluates to true when the close is greater than a 30-day SMA.

Technical Analysis Functions

33

Exponential Moving Average

ExponentialMovingAverage(Vector, Periods)
EMA(Vector, Periods)

MA Type Argument ID: EXPONENTIAL

Overview
An Exponential Moving Average is similar to a Simple Moving Average. An EMA
is calculated by applying a small percentage of the current value to the previous
value, therefore an EMA applies more weight to recent values.

Interpretation
A Moving Average is most often used to average values for a smoother
representation of the underlying price or indicator.

Example
CLOSE > EMA(CLOSE, 30)

Evaluates to true when the close is greater than a 30-day EMA.

Time Series Moving Average

TimeSeriesMovingAverage(Vector, Periods)
TSMA(Vector, Periods)

MA Type Argument ID: TIME_SERIES

Overview
A Time Series Moving Average is similar to a Simple Moving Average, except
that values are derived from linear regression forecast values instead of regular
values.

Interpretation
A Moving Average is most often used to average values for a smoother
representation of the underlying price or indicator.

Example
CLOSE > TSMA(CLOSE, 30)

Evaluates to true when the close is greater than a 30-day TSMA.

Technical Analysis Functions

34

Variable Moving Average

VariableMovingAverage(Vector, Periods)
VMA(Vector, Periods)

MA Type Argument ID: VARIABLE

Overview
A Variable Moving Average is similar to an exponential moving average except
that it adjusts to volatility.

Interpretation
A Moving Average is most often used to average values for a smoother
representation of the underlying price or indicator.

Example
CLOSE > VMA(CLOSE, 30)

Evaluates to true when the close is greater than a 30-day VMA.

Triangular Moving Average

TriangularMovingAverage(Vector, Periods)
TMA(Vector, Periods)

MA Type Argument ID: TRIANGULAR

Overview
The Triangular Moving Average is similar to a Simple Moving Average, except
that more weight is given to the price in the middle of the moving average
periods.

Interpretation
A Moving Average is most often used to average values for a smoother
representation of the underlying price or indicator.

Example
CLOSE > TMA(CLOSE, 30)

Evaluates to true when the close is greater than a 30-day TMA.

Technical Analysis Functions

35

Weighted Moving Average

WeightedMovingAverage(Vector, Periods)
WMA(Vector, Periods)

MA Type Argument ID: WEIGHTED

Overview
A Weighted Moving Average places more weight on recent values and less
weight on older values.

Interpretation
A Moving Average is most often used to average values for a smoother
representation of the underlying price or indicator.

Example
CLOSE > WMA(CLOSE, 30)

Evaluates to true when the close is greater than a 30-day WMA.

Welles Wilder Smoothing (Moving Average)

WellesWilderSmoothing(Vector, Periods)
WWS(Vector, Periods)

MA Type Argument ID: WILDER

Overview
The Welles Wilder's Smoothing indicator is similar to an exponential moving
average. The indicator does not use the standard exponential moving average
formula. Welles Wilder described 1/14 of today's value + 13/14 of yesterday's
average as a 14-day exponential moving average.

Interpretation
This indicator is used in the manner that any other moving average would be
used.

Example
CLOSE > WWS(CLOSE, 30)

Evaluates to true when the close is greater than a 30-day WWS.

Technical Analysis Functions

36

Volatility Index Dynamic Average - VIDYA (Moving Average)

VIDYA(Vector, Periods, R2Scale)

MA Type Argument ID: VIDYA

Overview
VIDYA (Volatility Index Dynamic Average), developed by Mr. Tuschar Chande, is
a moving average derived from linear regression R2.

Interpretation
A Moving Average is most often used to average values for a smoother
representation of the underlying price or indicator. Because VIDYA is a derivative
of linear regression, it quickly adapts to volatility.

Parameters
R2Scale is a value specifying the R-Squared scale to use in the linear regression
calculations. Mr. Chande recommends a value between 0.5 and 0.8 (default
value is 0.65).

Example
CLOSE > VIDYA(CLOSE, 30, 0.65)

Evaluates to true when the close is greater than a 30-day VIDYA with an R2 of
0.65.

Technical Analysis Functions

37

Linear Regression Functions

A classic statistical problem is to try to determine the relationship between two
random variables X and Y such as the closing price of a stock over time. Linear
regression attempts to explain the relationship with a straight line fit to the data.
The linear regression model postulates that Y = a + bX + e

Where the "residual" e is a random variable with mean zero. The coefficients a
and b are determined by the condition that the sum of the square residuals is as
small as possible. The indicators in this section are based upon this model.

R2 (R-Squared)

RSquared(Vector, Periods)
R2(Vector, Periods)

Overview
R-Squared is the coefficient of determination for the supplied vector over the
specified periods. The values oscillate between 0 and 1.

Example
R2(CLOSE, 30) < 0.1

Evaluates to true when the coefficient of determination is less than 0.1.

Slope

Slope(Vector, Periods)

Overview
Returns the linear regression slope value for the data being analyzed over the
specified number of periods. Values oscillate from negative to positive numbers.

Example
SLOPE(CLOSE, 30) > 0.3

Evaluates to true when the slope is greater than 0.3.

Technical Analysis Functions

38

Forecast

Forecast(Vector, Periods)

Overview
Returns the linear regression forecast for the next period based on the linear
regression calculation over the specified number of periods.

Example
Forecast(CLOSE, 30) > REF(CLOSE,1)

Evaluates to true when the forecast is higher than the previous closing price.

Intercept

Intercept(Vector, Periods)

Overview
Returns the linear regression intercept for the last period’s Y value, based on the
linear regression calculation over the specified number of periods.

Example
Intercept(CLOSE, 30) > REF(CLOSE,1)

Evaluates to true when the intercept is higher than the previous closing price.

Technical Analysis Functions

39

Band Functions

Certain technical indicators are designed for overlaying on price charts to form an
envelope or band around the underlying price. A change in trend is normally
indicated if the underlying price breaks through one of the bands or retreats after
briefly touching a band. The most popular band indicator is the Bollinger Bands,
developed by stock trader John Bollinger in the early 1980’s.

Bollinger Bands

BollingerBandsTop(Vector, Periods, Standard Deviations, MA Type)
BBT(Vector, Periods, Standard Deviations, MA Type)

BollingerBandsMiddle(Vector, Periods, Standard Deviations, MA Type)
BBM(Vector, Periods, Standard Deviations, MA Type)

BollingerBandsBottom(Vector, Periods, Standard Deviations, MA Type)
BBB(Vector, Periods, Standard Deviations, MA Type)

Overview
Bollinger bands rely on standard deviations in order to adjust to changing market
conditions. When a stock becomes volatile the bands widen (move further away
from the average). Conversely, when the market becomes less volatile the bands
contract (move closer to the average). Tightening of the bands is often used as
an early indication that the stock’s volatility is about to increase.

Interpretation
Bollinger Bands (as with most bands) can be imposed over an actual price or
another indicator. When prices rise above the upper band or fall below the lower
band, a change in direction may occur when the price penetrates the band after a
small reversal from the opposite direction.

Recommended Parameters
Vector: CLOSE
Periods: 20
Standard Deviations: 2
MA Type: EXPONENTIAL

Example
CLOSE > BBT(CLOSE, 20, 2, EXPONENTIAL)

Evaluates to true when the close is greater than a 20-day Bollinger Band Top
calculated by 2 standard deviations, using an exponential moving average.

Technical Analysis Functions

40

Moving Average Envelope

MovingAverageEnvelopeTop(Periods, MA Type, Shift)
MAET(Periods, MA Type, Shift)

MovingAverageEnvelopeBottom(Periods, MA Type, Shift)
MAEB(Periods, MA Type, Shift)

Overview
Moving Average Envelopes consist of moving averages calculated from the
underling price, shifted up and down by a fixed percentage.

Interpretation
Moving Average Envelopes (or trading bands) can be imposed over an actual
price or another indicator. When prices rise above the upper band or fall below
the lower band, a change in direction may occur when the price penetrates the
band after a small reversal from the opposite direction.

Recommended Parameters
Periods: 20
MA Type: SIMPLE
Shift: 5

Example
CLOSE > MAET(20, SIMPLE, 5)

Evaluates to true when the close is greater than a 20-day Moving Average
Envelope Top calculated by 5% using a simple moving average.

Prime Number Bands

PrimeNumberBandsTop()
PNBT()

PrimeNumberBandsBottom()
PNBB()

Overview
This novel indicator identifies the nearest prime number for the high and low and
plots the two series as bands.

Example
CLOSE > PNBT()

Evaluates to true when the close is greater than the Prime Number Bands Top.

Technical Analysis Functions

41

Oscillator Functions

This section covers technical indicators that oscillate from one value to another.

Most oscillators measure the velocity of directional price or volume movement.
These indicators often go into overbought and oversold zones, at which time a
reaction or reversal is possible. The slope of the oscillator is usually proportional
to the velocity of the price move. Likewise, the distance the oscillator moves up
or down is usually proportional to the magnitude of the move.

A large percentage of technical indicators oscillate, so this section covers quite a
few functions.

Momentum Oscillator

MomentumOscillator(Vector, Periods)
MO(Vector, Periods)

Overview
The momentum oscillator calculates the change of price over a specified length
of time as a ratio.

Interpretation
Increasingly high values of the momentum oscillator may indicate that prices are
trending strongly upwards. The momentum oscillator is closely related to MACD
and Price Rate of Change (ROC).

Recommended Parameters
Vector: CLOSE
Periods: 14

Example
MO(CLOSE, 14) > 90

Evaluates to true when the momentum oscillator of the close is over 90

Technical Analysis Functions

42

Chande Momentum Oscillator

ChandeMomentumOscillator(Vector, Periods)
CMO(Vector, Periods)

Overview
The Chande Momentum Oscillator (CMO), developed by Tushar Chande, is an
advanced momentum oscillator derived from linear regression. This indicator was
published in his book titled “New Concepts in Technical Trading” in the mid 90’s.

Interpretation
The CMO enters into overbought territory at +50, and oversold territory at -50.
You can also create buy/sell triggers based on a moving average of the CMO.
Also, increasingly high values of CMO may indicate that prices are trending
strongly upwards. Conversely, increasingly low values of CMO may indicate that
prices are trending strongly downwards.

Recommended Parameters
Vector: CLOSE
Periods: 14

Example
CMO(CLOSE, 14) > 48

Evaluates to true when the CMO of the close is overbought.

Volume Oscillator

VolumeOscillator(Short Term Periods, Long Term Periods, MA Type, Points or Percent)
VO(Short Term Periods, Long Term Periods, MA Type, Points or Percent)

Overview
The Volume Oscillator shows a spread of two different moving averages of
volume over a specified period of time.

Interpretation
Offers a clear view of whether or not volume is increasing or decreasing.

Recommended Parameters
Short Term Periods: 9
Long Term Periods: 21
MA Type: SIMPLE
Points or Percent: PERCENT

Example
VO(9, 21, SIMPLE, PERCENT) > 0

Technical Analysis Functions

43

Price Oscillator

PriceOscillator(Vector, Short Term Periods, Long Term Periods, MA Type)
PO(Vector, Short Term Periods, Long Term Periods, MA Type)

Overview
Similar to the Volume Oscillator, the Price Oscillator is calculated based on a
spread of two moving averages.

Interpretation
The Price Oscillator is basically a moving average spread. Buying usually occurs
when the oscillator rises, and selling usually occurs when the oscillator falls.

Recommended Parameters
Vector: CLOSE
Short Term Periods: 9
Long Term Periods: 14
MA Type: SIMPLE

Example
PO(CLOSE, 9, 14, SIMPLE) > 0

Evaluates to true when the Price Oscillator is in positive territory.

Detrended Price Oscillator

DetrendedPriceOscillator(Vector, Periods, MA Type)
DPO(Vector, Periods, MA Type)

Overview
Similar to the Price Oscillator except DPO is used when long-term trends or
outliers make the underlying price difficult to analyze.

Interpretation
Buying occurs when the oscillator rises. Selling occurs when the oscillator falls.

Recommended Parameters
Vector: CLOSE
Periods: 20
MA Type: SIMPLE

Example
DPO(CLOSE, 20, SIMPLE) > 0

Evaluates to true when the Detrended Price Oscillator is in positive territory.

Technical Analysis Functions

44

Prime Number Oscillator

PrimeNumberOscillator(Vector)
PNO(Vector)

Overview
Finds the nearest prime number from either the top or bottom of the series, and
plots the difference between that prime number and the series itself.

Interpretation
This indicator can be used to spot market turning points. When the oscillator
remains at the same high point for two consecutive periods in the positive range,
consider selling. Conversely, when the oscillator remains at a low point for two
consecutive periods in the negative range, consider buying.

Recommended Parameters
Vector: CLOSE

Example
PNO(CLOSE) = REF(PNO(CLOSE), 1)
AND REF(PNO(CLOSE), 2) != PNO(CLOSE)

Fractal Chaos Oscillator

FractalChaosOscillator(Periods)
FCO(Periods)

Overview
The chaotic nature of stock market movements explains why it is sometimes
difficult to distinguish daily charts from monthly charts if the time scale is not
given. The patterns are similar regardless of the time resolution. Like the
chambers of the nautilus, each level is like the one before it, but the size is
different. To determine what is happening in the current level of resolution, the
fractal chaos oscillator can be used to examine these patterns.

Interpretation
A buy signal is generated when the oscillator tops, and a sell signal is generated
when the oscillator bottoms.

Recommended Parameters
Periods: 21

Example
FCO(21) > REF(FCO(21),1)

Technical Analysis Functions

45

Rainbow Oscillator

RainbowOscillator(Vector, Levels, MA Type)
RBO(Vector, Levels, MA Type)

Overview
The rainbow oscillator is calculated based upon multiple time frames of a moving
average.

Interpretation
The trend may reverse suddenly when values stay above 0.80 or below 0.20 for
two consecutive days.

Recommended Parameters
Vector: CLOSE
Levels: 3
MA Type: SIMPLE

Example
SET R = RBO(CLOSE, 3, SIMPLE)
R > 0.8 AND REF(R, 1) > 0.8

Evaluates to true when the Rainbow Oscillator has been above 0.8 for at least
two consecutive days.

TRIX

TRIX(Vector, Periods)

Overview
TRIX is a momentum oscillator that shows the rate of change of an exponentially
averaged closing price.

Interpretation
The most common usage of the TRIX oscillator is to buy when the oscillator rises
and sell when the oscillator falls.

Recommended Parameters
Vector: CLOSE
Periods: 9

Example
TRIX(CLOSE, 9) > 0.9

Evaluates to true when TRIX is in overbought territory.

Technical Analysis Functions

46

Vertical Horizontal Filter

VerticalHorizontalFilter(Vector, Periods)
VHF(Vector, Periods)

Overview
The Vertical Horizontal Filter (VHF) identifies whether a market is in a trending or
a choppy movement phase.

Interpretation
The VHF indicator is most commonly used as an indicator of market volatility. It is
also frequently used as a component to other technical indicators.

Recommended Parameters
Vector: CLOSE
Periods: 21

Example
VHF(CLOSE, 21) < 0.2

Ease Of Movement

EaseOfMovement(Vector, Periods)
EOM(Vector, Periods)

Overview
The Ease of Movement oscillator displays a unique relationship between price
change and volume.

Interpretation
The Ease of Movement oscillator rises when prices are trending upwards under
low volume, and likewise, the Ease of Movement oscillator falls when prices are
trending downwards under low volume.

Recommended Parameters
Vector: CLOSE
Periods: 21

Example
EOM(CLOSE, 21) > 0

Evaluates to true when the Ease of Movement is in positive territory.

Technical Analysis Functions

47

Wilder’s Directional Movement System

ADX(Periods), ADXR(Periods), DIP(Periods), DIN(Periods), TRSUM(Periods), DX(Periods)

Overview
The Welles Wilder's Directional Movement System contains five indicators; ADX,
DI+, DI-, DX, and ADXR.

The ADX (Average Directional Movement Index) is an indicator of how much the
market is trending, either up or down: the higher the ADX line, the more the
market is trending and the more suitable it becomes for a trend-following system.
This indicator consists of two lines: DI+ and DI-, the first one being a measure of
uptrend and the second one a measure of downtrend.

Detailed information about this indicator and formulas can be found in Welles
Wilder's book, "New Concepts in Technical Trading Systems". The standard
Directional Movement System draws a 14 period DI+ and a 14 period DI- in the
same chart panel. ADX is also sometimes shown in the same chart panel.

Interpretation
A buy signal is given when DI+ crosses over DI-, a sell signal is given when DI-
crosses over DI+.

Recommended Parameters
Periods: 21

Example
DIP(14) > 60

True Range

TrueRange()
TR()

Overview
The True Range is a component of Wilder’s Directional Movement System.

Example
TR() > 1.95

Technical Analysis Functions

48

Williams %R

WilliamsPctR(Periods)
WPR(Periods)

Overview
Developed by trader Larry Williams, the Williams’ %R indicator measures
overbought/oversold levels. This indicator is similar to the Stochastic Oscillator.
The outputs range from 0 to -100.

Interpretation
The market is considered overbought when the %R is in a range of 0 to
-20, and oversold when %R is in a range of -80 to -100.

Recommended Parameters
Periods: 14

Example
WPR(14) < -80

Evaluates to true when Williams’ %R is oversold.

Williams’ Accumulation / Distribution

WilliamsAccumulationDistribution()
WAD()

Overview
Another indicator developed by trader Larry Williams, the Accumulation /
Distribution indicator shows a relationship of price and volume.

Interpretation
When the indicator is rising, the security is said to be accumulating. Conversely,
when the indicator is falling, the security is said to being distributing. Prices may
reverse when the indicator converges with price.

Example
WAD() < 1

Evaluates to true when Williams’ Accumulation / Distribution is below 1.

Technical Analysis Functions

49

Chaikin Volatility

ChaikinVolatility(Periods, Rate of Change, MA Type)
CV(Periods, Rate of Change, MA Type)

Overview
The Chaikin Volatility Oscillator is a moving average derivative of the
Accumulation / Distribution index. This indicator quantifies volatility as a widening
of the range between the high and the low price.

Interpretation
The Chaikin Volatility Oscillator adjusts with respect to volatility, independent of
long-term price action. The most popular interpretation is to sell when the
indicator tops out, and to buy when the indicator bottoms out.

Recommended Parameters
Periods: 10
Rate of Change: 10
MA Type: SIMPLE

Example
CV(10, 10, SIMPLE) < -25

Aroon

AroonUp(Periods)
AroonDown(Periods)

Overview
The Aroon indicator was developed by Tushar Chande in the mid 1990’s. This
indicator is often used to determine whether a stock is trending or not and how
stable the trend is.

Interpretation
Trends are determined by extreme values (above 80) of both lines (Aroon up and
Aroon down), whereas unstable prices are determined when both lines are low
(less than 20).

Recommended Parameters
Periods: 25

Example
AroonUp(25) > 80 AND AroonDown(25) > 80

Technical Analysis Functions

50

Moving Average Convergence / Divergence (MACD)

MACD(Short Cycle, Long Cycle, Signal Periods, MA Type)
MACDSignal(Short Cycle, Long Cycle, Signal Periods, MA Type)

Overview
The MACD is a moving average oscillator that shows potential
overbought/oversold phases of market fluctuation. The MACD is a calculation of
two moving averages of the underlying price/indicator.

Interpretation
Buy and sell interpretations may be derived from crossovers (calculated by the
MACDSignal function), overbought / oversold levels of the MACD and
divergences between MACD and underlying price.

Recommended Parameters
Long Cycle: 26
Short Cycle: 13
Signal Periods: 9
MA Type: SIMPLE

Example
SET A = MACDSignal(13, 26, 9, SIMPLE)
SET B = MACD(13, 26, 9, SIMPLE)
CROSSOVER(A, B) = TRUE

Evaluates to true when the MACD Signal line recently crossed over the MACD.

High Minus Low

HighMinusLow()
HML()

Overview
This function returns the high price minus the low price for each bar.

Interpretation
This indicator is often used as a component for other technical indicators but can
be used with a moving average to show the change in price action over time.

Example
SET A = SMA(HML(), 14)
A > REF(A, 10)

Evaluates to true when the height of each bar has been increasing over the past
several bars.

Technical Analysis Functions

51

Stochastic Oscillator

SOPK(%K Periods, %K Slowing Periods, %D Periods, MA Type)
SOPD(%K Periods, %K Slowing Periods, %D Periods, MA Type)

Overview
The Stochastic Oscillator is a popular indicator that shows where a security’s
price has closed in proportion to its closing price range over a specified period of
time.

Interpretation
The Stochastic Oscillator has two components: %K (the SOPK function) and %D
(the SOPD function). %K is most often displayed on a stock chart as a solid line
and %D is often shown as a dotted line. The most widely used method for
interpreting the Stochastic Oscillator is to buy when either component rises
above 80 or sell when either component falls below 20. Another way to interpret
the Stochastic Oscillator is to buy when %K rises above %D, and conversely, sell
when %K falls below %D.

Recommended Parameters
% K Periods: 9
% K Slowing Periods: 3
% D Periods: 9
MA Type: SIMPLE

Example
SOPK(9, 3, 9, SIMPLE) > 80 OR SOPD(9, 3, 9, SIMPLE) > 80

Evaluates to true when the Stochastic Oscillator is in oversold territory.

Technical Analysis Functions

52

Index Functions

This section covers technical indicators that are known as indexes, such as the
famous Relative Strength Index, Historical Volatility Index, and many others.

Relative Strength Index

RelativeStrengthIndex(Vector, Periods)
RSI(Vector, Periods)

Overview
The RSI is popular indicator developed by trader Welles Wilder. The RSI is a
popular indicator that shows comparative price strength within a single security.

Interpretation
The most widely used method for interpreting the RSI is price / RSI divergence,
support / resistance levels and RSI chart formations.

Recommended Parameters
Vector: CLOSE
Periods: 14

Example
RSI(CLOSE, 14) > 55

Mass Index

MassIndex(Periods)
MI(Periods)

Overview
The Mass Index identifies price changes by indexing the narrowing and widening
change between high and low prices.

Interpretation
According to the inventor of the Mass Index, reversals may occur when a 25-
period Mass Index rises above 27 or falls below 26.5.

Recommended Parameters
Periods: 25

Example
MI(25) > 27

Technical Analysis Functions

53

Historical Volatility Index

HistoricalVolatilityIndex(Vector, Periods, Bar History, Standard Deviations)
HVI(Vector, Periods, Bar History, Standard Deviations)

Overview
Historical volatility is the log-normal standard deviation. The Historical Volatility
Index is based on the book by Don Fishback, "Odds: The Key to 90% Winners".

The formula for a 30-day historical volatility index between 1 and 0 is:
Stdev(Log(Close / Close Yesterday), 30) * Sqrt(365)

Some traders use 252 instead of 365 for the bar history that is used by the
square root function. The Log value is a natural log (i.e. Log10).

Interpretation
High values of HVI indicate that the stock is volatile, while low values of HVI
indicate that the stock is either flat or trending steadily.

Recommended Parameters
Vector: CLOSE
Periods: 15
Bar History: 30
Standard Deviations: 2

Example
HVI(CLOSE, 15, 30, 2) < 0.01

Money Flow Index

MoneyFlowIndex(Periods)
MFI(Periods)

Overview
The Money Flow Index measures money flow of a security, using volume and
price for calculations.

Interpretation
Market bottoms may be identified by values below 20 and tops may be identified
by values above 80. Divergence of price and Money Flow Index may be watched.

Recommended Parameters
Periods: 15

Example
MFI(15) < 20

Technical Analysis Functions

54

Chaikin Money Flow Index

ChaikinMoneyFlow (Periods)
CMF (Periods)

Overview
The Chaikin Money Flow oscillator is a momentum indicator that spots buying
and selling by calculating price and volume together. This indicator is based upon
Accumulation / Distribution, which is in turn based upon the premise that if a
stock closes above its midpoint, (high + low) / 2, for the day then there was
accumulation that day, and if it closes below its midpoint, then there was
distribution that day.

Interpretation
A buy signal is generated when the indicator is rising and is in positive territory.
A sell signal is generated when the indicator is falling and is in negative territory.

Recommended Parameters
Periods: 15

Example
CMF(15) > 20 AND REF(CMF(15), 1) > 20

Evaluates to true when the Chaikin Money Flow Index is bullish.

Comparative Relative Strength Index

ComparativeRelativeStrength(Vector1, Vector2)
CRSI (Vector1, Vector2)

Overview
The Comparative Relative Strength index compares one vector with another.

Interpretation
The base vector is outperforming the other vector when the Comparative RSI is
trending upwards.

Recommended Parameters
Vector1: CLOSE
Vector2: [Any]

Example
CRSI(CLOSE, VOLUME) > 1

Evaluates to true when the trend in price has outpaced the trend in volume.

Technical Analysis Functions

55

Price Volume Trend

PriceVolumeTrend(Vector)
PVT(Vector)

Overview
Also known as Volume Price Trend. This indicator consists of a cumulative
volume that adds or subtracts a multiple of the percentage change in price trend
and current volume, depending upon their upward or downward movements.
PVT is used to determine the balance between a stock's demand and supply.
This indicator shares similarities with the On Balance Volume index.

Interpretation
The Price and Volume Trend index generally precedes actual price movements.
The premise is that well-informed investors are buying when the index rises and
uninformed investors are buying when the index falls.

Recommended Parameters
Vector: CLOSE

Example
TREND(PVT(CLOSE)) = UP

Evaluates to true when PVT is trending upwards.

Positive Volume Index

PositiveVolumeIndex(Vector)
PVI(Vector)

Overview
The Positive Volume Index puts focus on periods when volume increases from
the previous period.

Interpretation
The interpretation of the Positive Volume Index is that the majority of investors
are buying when the index rises, and selling when the index falls.

Recommended Parameters
Vector: CLOSE

Example
TREND(PVI(CLOSE)) = UP

Evaluates to true when PVI is trending upwards.

Technical Analysis Functions

56

Negative Volume Index

NegativeVolumeIndex(Vector)
NVI(Vector)

Overview
The Negative Volume Index is similar to the Positive Volume Index, except it puts
focus on periods when volume decreases from the previous period.

Interpretation
The interpretation of the Negative Volume Index is that well-informed investors
are buying when the index falls and uninformed investors are buying when the
index rises.

Recommended Parameters
Vector: CLOSE

Example
TREND(NVI(CLOSE)) = UP

Evaluates to true when NVI is trending upwards.

On Balance Volume

OnBalanceVolume(Vector)
OBV(Vector)

Overview
The On Balance Volume index shows a relationship of price and volume in the
form of a momentum index.

Interpretation
On Balance Volume generally precedes actual price movements. The premise is
that well-informed investors are buying when the index rises and uninformed
investors are buying when the index falls.

Recommended Parameters
Vector: CLOSE

Example
TREND(OBV(CLOSE)) = UP

Evaluates to true when OBV is trending upwards.

Technical Analysis Functions

57

Performance Index

PerformanceIndex(Vector)
PFI(Vector)

Overview
The Performance indicator calculates price performance as a normalized value
or percentage.

Interpretation
A Performance indicator shows the price of a security as a normalized value. If
the Performance indicator shows 50, then the price of the underlying security has
increased 50% since the start of the Performance indicator calculations.
Conversely, if the indictor shows -50, then the price of the underlying security has
decreased 50% since the start of the Performance indicator calculations.

Recommended Parameters
Vector: CLOSE

Example
PFI(CLOSE) > 45

Evaluates to true when the performance index is over 45%

Trade Volume Index

TradeVolumeIndex(Vector, Minimum Tick Value)
TVI(Vector, Minimum Tick Value)

Overview
The Trade Volume index shows whether a security is being accumulated or
distributed (similar to the Accumulation/Distribution index).

Interpretation
When the indicator is rising, the security is said to be accumulating. Conversely,
when the indicator is falling, the security is said to being distributing. Prices may
reverse when the indicator converges with price.

Recommended Parameters
Vector: CLOSE
Minimum Tick Value: 0.25

Example
TVI(CLOSE, 0.25) > 0

Evaluates to true when the Trade Volume Index is in positive territory.

Technical Analysis Functions

58

Swing Index

SwingIndex(Limit Move Value)
SI(Limit Move Value)

Overview
The Swing Index (Wilder) is a popular indicator that shows comparative price
strength within a single security by comparing the current open, high, low, and
close prices with previous prices.

Interpretation
The Swing Index is a component of the Accumulation Swing Index.

Recommended Parameters
Limit Move Value: 1

Example
SI(1) > 0

Evaluates to true when the Swing Index is in positive territory.

Accumulative Swing Index

AccumulativeSwingIndex(Limit Move Value)
ASI(Limit Move Value)

Overview
The Accumulation Swing Index (Wilder) is a cumulative total of the Swing Index,
which shows comparative price strength within a single security by comparing the
current open, high, low, and close prices with previous prices.

Interpretation
The Accumulation Swing Index may be analyzed using technical indicators, line
studies, and chart patterns, as an alternative view of price action.

Recommended Parameters
Limit Move Value: 1

Example
TREND(ASI(1)) > UP

Evaluates to true when the Accumulative Swing Index is trending upwards.

Technical Analysis Functions

59

Commodity Channel Index (CCI)

CommodityChannelIndex(Periods, MA Type)
CCI(Periods, MA Type)

Overview
Donald Lambert developed the CCI indicator. Although the purpose of this
indicator is to identify cyclical turns in commodities, it is often used for securities.

Interpretation
This indicator oscillates between an overbought and oversold condition and
works best in a sideways market.

Recommended Parameters
Periods: 21
MA Type: SIMPLE

Example
CCI(12, SIMPLE) > 0 AND REF(CCI(12, SIMPLE), 1) < 0

Evaluates to true when the CCI has just moved into positive territory.

Parabolic Stop and Reversal (Parabolic SAR)

ParabolicSAR(Min AF, Max AF)
PSAR(Min AF, Max AF)

Overview
Author Welles Wilder developed the Parabolic SAR. This indicator is always in
the market (whenever a position is closed, an opposing position is taken). The
Parabolic SAR indicator is most often used to set trailing price stops.

Interpretation
A stop and reversal (SAR) occurs when the price penetrates a Parabolic SAR
level.

Recommended Parameters
Min AF (Accumulation Factor): 0.02
Max AF (Accumulation Factor): 0.2

Example
CROSSOVER(CLOSE, PSAR(0.02, 0.2)) = TRUE

Evaluates to true when the close recently crossed over the Parabolic SAR.

Technical Analysis Functions

60

Stochastic Momentum Index

SMIK(%K Periods, %K Smooth, %K Double Periods, %D Periods, MA Type, %D MA Type)
SMID(%K Periods, %K Smooth, %K Double Periods, %D Periods, MA Type, %D MA Type)

Overview
The Stochastic Momentum Index, developed by William Blau, first appeared in
the January 1993 issue of Stocks & Commodities magazine. This indicator plots
the closeness of price relative to the midpoint of the recent high / low range.

Interpretation
The Stochastic Momentum Index has two components: %K (SMIK) and %D
(SMID). %K is most often displayed on a chart as a solid line and %D is often
shown as a dotted line. The most widely used method for interpreting the
Stochastic Momentum Index is to buy when either component rises above 40 or
sell when either component falls below 40. Another way to interpret the
Stochastic Momentum Index is to buy when %K rises above %D, or sell when
%K falls below %D.

Recommended Parameters
%K Periods: 14
%K Smoothing: 2
%K Double Periods: 3
%D Periods: 9
MA Type: SIMPLE
%D MA Type: SIMPLE

Example
SMID(14, 2, 3, 9, SIMPLE, SIMPLE) > 40 OR
SMIK(14, 2, 3, 9, SIMPLE, SIMPLE) > 40

Evaluates to true when the Stochastic Momentum Index is in oversold territory.

Technical Analysis Functions

61

General Indicator Functions

Median Price

MEDIANPRICE()
MP()

Overview
A Median Price is simply an average of one period’s high and low values.

Interpretation
A Median Price is often used as an alternative way of viewing price action and
also as a component for calculating other technical indicators.

Example
CROSSOVER(CLOSE, SMA(MP(), 14))

Evaluates to true when the close crossed over the 14-day SMA of the Median
Price.

Typical Price

TypicalPrice()
TP()

Overview
A Typical Price is an average of one period’s high, low, and close values.

Interpretation
A Typical Price is used as a component for the calculation of several technical
indicators.

Example
CROSSOVER(CLOSE, SMA(TP(), 14))

Evaluates to true when the close crossed over the 14-day SMA of the Typical
Price.

Technical Analysis Functions

62

Weighted Close

WeightedClose()
WC()

Overview
Weighted Close is an average of each day’s open, high, low, and close, where
more weight is placed on the close.

Interpretation
The Weighted Close indicator is a simple method that offers a simplistic view of
market prices.

Example
WC() > REF(WC(), 1)

Evaluates to true when the weighted close is higher than the previous value.

Price Rate of Change

PriceRateOfChange(Vector, Periods)
PROC(Vector, Periods)

Overview
The Price ROC shows the difference between the current price and the price one
or more periods in the past.

Interpretation
A 12-day Price ROC is most often used as an overbought/oversold indicator.

Recommended Parameters
Vector: CLOSE
Periods: 12

Example
PROC(CLOSE, 12) > 0 AND REF(PROC(CLOSE, 12),1) < 0

Evaluates to true when the Price ROC recently shifted into positive territory.

Technical Analysis Functions

63

Volume Rate of Change

VolumeRateOfChange(Vector, Periods)
VROC(Vector, Periods)

Overview
The Volume Rate of Change indicator shows whether or not volume is trending in
one direction or another.

Interpretation
Sharp Volume ROC increases may signal price breakouts.

Recommended Parameters
Vector: VOLUME
Periods: 12

Example
VROC(VOLUME, 12) > 0 AND REF(VROC(VOLUME, 12), 1) < 0

Evaluates to true when the Volume ROC recently moved into positive territory.

Highest High Value

HighestHighValue(Periods)
HHV(Periods)

Overview
Returns the highest value of the high price over the specified number of periods.

Interpretation
Used as a component for calculation by many other technical indicators.

Recommended Parameters
Periods: 21

Example
HIGH = HHV(21)

Evaluates to true when the high is the highest high in the past 21 bars.

Technical Analysis Functions

64

Lowest Low Value

LowestLowValue(Periods)
LLV(Periods)

Overview
Returns the lowest value of the low price over the specified number of periods.

Interpretation
Used as a component for calculation by many other technical indicators.

Recommended Parameters
Periods: 21

Example
LOW = LLV(21)

Evaluates to true when the low is the lowest low in the past 21 bars.

Standard Deviations

StandardDeviations(Vector, Periods, Standard Deviations, MA Type)
SDV(Vector, Periods, Standard Deviations, MA Type)

Overview
Standard Deviation is a common statistical calculation that measures volatility.
Many technical indicators rely on standard deviations as part of their calculation.

Interpretation
Major highs and lows often accompany extreme volatility. High values of
standard deviations indicate that the price or indicator is more volatile than usual.

Recommended Parameters
Vector: CLOSE
Periods: 21
Standard Deviations: 2
MA Type: SIMPLE

Example
SDV(CLOSE, 21, 2, SIMPLE) > REF(SDV(CLOSE, 21, 2, SIMPLE), 10)

Evaluates to true when 21 period Standard Deviations are greater than 10 days
ago.

Technical Analysis Functions

65

Correlation Analysis

CorrelationAnalysis(Vector1, Vector2)
CA(Vector1, Vector2)

Overview
Correlation analysis is used to determine the relationship between two vectors.

Interpretation
The function returns a value indicating the relationship between two Vectors. The
Vectors may contain price, indicator values, or other values.

Recommended Parameters
Vector1: [Any Vector]
Vector2: [Any Vector]

Example
CA(CLOSE, SMA(CLOSE, 14)) > 0.99

Evaluates to true when the close price movement highly correlates with the 14-
day SMA movement.

Technical Analysis Functions

66

Japanese Candlestick Patterns

Just about every trader is familiar with Japanese Candlestick charting, which was
popularized by Steve Nison, author of the book "Japanese Candlestick Charting
Techniques". Many traders have been using a form of Japanese candlestick
charting for decades, even before it was named "candlestick charting".

What are Candlesticks?
The main feature of a candlestick is that the area between the open and close
price is filled in, with emphasis on the direction. Typically you will see bars
represented as dark candles on days where the price closed lower than the
open, or white candles on days where the price closed higher than the open. The
actual high and low prices are called "wicks". Candlesticks don't involve
calculations, rather they simply offer a different perspective for viewing price
action. The interpretation of candlesticks is based primarily on patterns that are
formed from period to period. For example, you may have heard of terms like
"Three Black Crows", "Morning Star", or "Dark Cloud Cover". These are all
candlestick patterns, which are formed by two or more candlesticks.

A Graphical Representation
A Japanese Candlestick pattern is a
group of price bars as shown in figure 1.
Traditionally you will see dark candles
on days where the price closed lower
than the open, or white candles on days
where the price closed higher than the
open. Sometimes in instructional
material you will see gray bars, which
means that the bar may be either white
or black.

Figure 1

Technical Analysis Functions

67

Identifying Candlestick Patterns

Although you could very well write your own scripts to search for candlestick
patterns, TradeScript™ provides a simple, built-in function that can identify up to
two-dozen predefined patterns:

CandlestickPattern()
CSP()

Overview
The CandlestickPattern() function identifies candlestick patterns automatically.
The function takes no arguments and outputs a constant representing one of the
two-dozen candlestick patterns as outlined below.

Example
CSP() = MORNING_STAR

Evaluates to true when the candlestick pattern is a Morning Star.

Patterns
The Candlestick function returns the following constants. Also see chapter 5 for
visual representations of these patterns:

LONG_BODY
DOJI
HAMMER
HARAMI
STAR
DOJI_STAR
MORNING_STAR
EVENING_STAR
PIERCING_LINE
ENGULFING_LINE
HANGING_MAN
DARK_CLOUD_COVER
BEARISH_ENGULFING_LINE
BEARISH_DOJI_STAR
BEARISH_SHOOTING_STAR
SPINNING_TOPS
HARAMI_CROSS
BULLISH_TRISTAR
THREE_WHITE_SOLDIERS
THREE_BLACK_CROWS
ABANDONED_BABY
BULLISH_UPSIDE_GAP
BULLISH_HAMMER
BULLISH_KICKING
BEARISH_KICKING
BEARISH_BELT_HOLD
BULLISH_BELT_HOLD
BEARISH_TWO_CROWS
BULLISH_MATCHING_LOW

68

 Chapter 4

 Trading System Examples & Techniques

4

Trading Systems

A trading system is basically a set of rules that determine entry and exit points for
any given stock. Traders often refer to these points as trade signals.

A trading system is objective and mechanical. The purpose is to provide a
strategy to produce profits greater than losses by controlling your trades for you.

This chapter provides hands-on learning by teaching the trader how to translate
trading system rules into script form using real trading systems as examples.

Trading systems usually include one or more technical indicators in their
implementation. For example, a Moving Average Crossover system would buy
when a short-term moving average crosses above a long-term moving average
and sell when a short-term moving average crosses below a long-term moving
average.

Trading systems may have any number of rules, such as “don’t buy unless
volume is trending upwards”, or “exit if Parabolic SAR crosses the close”, etc.

The actual profitability of a trading system depends on how well the trading
system’s rules perform on a trade-by-trade basis. Traders spend much of their
time optimizing their trading systems in order to increase profits and reduce risks.
In the case of a basic Moving Average Crossover system, this is accomplished
by modifying the parameters of the moving averages themselves.

A trader may optimize a trading system by means of back testing. The back
testing feature of TradeScript™ allows you to back test your trading systems and
modify parameters to achieve the maximum amount of profit and minimum
amount of risk. Refer to your trading software documentation for details.

Trading System Examples & Techniques

69

Moving Average Crossover System

The Moving Average Crossover System is perhaps the simplest of all trading
systems. This system uses two moving averages to generate signals. A buy
signal is generated when a short-term moving average crosses over a longer-
term moving average, and sells when a short-term moving average crosses
below a long-term moving average.

The number of signals generated by this trading system is proportional to the
length and type of moving averages used. Short-term moving averages generate
more signals and enter into trades sooner than longer-term moving averages.

Unfortunately, a very short-term moving average crossover system will also
generate more false signals than a longer-term system, while a very long-term
system will generate fewer false signals, but will also miss a larger proportion of
profits. This difficult balance applies to nearly every trading system and is the
core subject of numerous books on technical analysis.

One solution to this problem is to use a secondary technical indicator to confirm
entry and/or exit signals. A popular technical indicator used primarily for exit
signals is the Parabolic SAR. The following script uses a 20/60 EMA for entries
and a Parabolic SAR for exits.

Trading System Examples & Techniques

70

Moving Average Crossover System Script

Buy Signals

20-period EMA crosses over the 60-period EMA
CROSSOVER(EMA(CLOSE, 20), EMA(CLOSE, 60))

Sell Signals

20-period EMA crosses under the 60-period EMA
CROSSOVER(EMA(CLOSE, 60), EMA(CLOSE, 20))

Exit Long

The close crosses above the Parabolic SAR
CROSSOVER(CLOSE, PSAR(CLOSE, 0.02, 0.2))

Exit Short

The close crosses below the Parabolic SAR
CROSSOVER(PSAR(CLOSE, 0.02, 0.2), CLOSE)

Trading System Examples & Techniques

71

Price Gap System

An upward price gap occurs when a stock opens substantially higher than the
previous day’s high price. This often occurs after an unexpected announcement,
much better than expected earnings report, and so forth.

A large number of buy orders are executed when the market opens. During this
time the price may be exaggerated as investors may be buying the stock simply
because it shows strength at the opening.

The price often retreats to fill the gap once orders stop coming in and the
demand for the stock subsides. The key to this trading system is that reversals
usually occur during the first hour of trading. In other words, if the gap is not filled
during the first hour then we may assume that buying will continue.

This trading system is often more successful if volume is around twice the five-
day average of volume.

Example: The script returns securities that have gapped up by 2% and closed
near the high. When the market opens on the following day, the strategy would
be to buy stock after the first hour of trading if the strength sustained.
A stop-loss order would be set at the day’s low. A conservative profit objective
would normally be half the percentage of the gap, or 1% in this case.

Trading System Examples & Techniques

72

Price Gap Script

Buy Signals

A 2% gap up in price over the previous day on high volume
LOW > REF(HIGH,1) * 1.02 AND
VOLUME > SMA(VOLUME, 5) * 2

Sell Signals

A 2% gap down in price over the previous day on high volume
HIGH < REF(LOW,1) * 0.98 AND
VOLUME > SMA(VOLUME, 5) * 2

Exit Long

Use a profit objective roughly ½ the size of the gap with a stop-loss.

Exit Short

Use a profit objective roughly ½ the size of the gap with a stop-loss.

Trading System Examples & Techniques

73

Bollinger Bands System

Bollinger bands are similar to moving averages except they are shifted above
and below the price by a certain number of standard deviations to form an
envelope around the price. And unlike a moving average or a moving average
envelope, Bollinger bands are calculated in such a way that allows them to widen
and contract based on market volatility.

Prices usually stay contained within the bands. One strategy is to buy or sell after
the price touches and then retreats from one of the bands. A move that originates
at one band usually tends to move all the way to the other band.

Another strategy is to buy or sell if the price goes outside the bands. If this
occurs, the market is likely to continue in that direction for some length of time.

The Bollinger band trading system outlined in this example uses a combination of
both trading strategies. The system buys if a recent bar touched the bottom band
and the current bar is within the bands, and also buys if the current high has
exceeded the top band by a certain percentage. The system sells based on the
opposite form of this strategy.

Trading System Examples & Techniques

74

Bollinger Bands Script

Buy Signals

Buy if a previous value was below the low band and is now above
SET Bottom = BBB(CLOSE, 20, 2, EXPONENTIAL)
SET Top = BBT(CLOSE, 20, 2, EXPONENTIAL)
((REF(CLOSE, 1) < REF(Bottom, 1)) AND
CLOSE > Bottom) OR
Also buy if the close is above the top band plus 2%
CLOSE > Top * 1.02

Sell Signals

Sell if a previous value was above the high band and is now below
SET Bottom = BBB(CLOSE, 20, 2, EXPONENTIAL)
SET Top = BBT(CLOSE, 20, 2, EXPONENTIAL)
((REF(CLOSE, 1) > REF(Top, 1)) AND
CLOSE < Top) OR
Also sell if the close is below the bottom band minus 2%
CLOSE < Bottom * 0.98

Trading System Examples & Techniques

75

Historical Volatility and Trend

This trading system buys or sells on increasing volume and lessening volatility.
The concept is that trends are more stable if volatility has been decreasing and
volume has been increasing over many days.

Volume is an important component to this trading system since almost every
important turning point in a stock is accompanied by an increase in volume.

The key element in this trading system is the length of the primary price trend.
The longer the price trend is, the more reliable the signal.

Also try experimenting with this trading system by substituting the TREND
function for volume with the Volume Oscillator function, or the Volume Rate of
Change function.

Trading System Examples & Techniques

76

Historical Volatility and Trend Script

Buy Signals

Buy if volatility is decreasing and volume is increasing with price in an uptrend
HistoricalVolatility(CLOSE, 15, 252, 2) < REF(HistoricalVolatility(CLOSE, 15, 365, 2), 15)
AND
TREND(VOLUME, 5) = UP AND TREND(CLOSE, 40) = UP

Sell Signals

Sell if volatility is decreasing and volume is increasing with price in a downtrend
HistoricalVolatility(CLOSE, 15, 252, 2) < REF(HistoricalVolatility(CLOSE, 15, 365, 2), 15)
AND
TREND(VOLUME, 5) = UP AND TREND(CLOSE, 40) = DOWN

Trading System Examples & Techniques

77

Parabolic SAR / MA System

This system is a variation of a standard moving average crossover system.
Normally a Parabolic SAR is used only as a signal for exit points, however in this
trading system we use the crossover of two exponential moving averages to
decide if we should buy or sell whenever the Parabolic SAR indicator crosses
over the close.

The Parabolic SAR can be used in the normal way after the trade has been
opened. Profits should be taken when the close crosses the Parabolic SAR.

This example shows how to use Boolean logic to find securities that match the
condition either for the current trading session or the previous trading day.

Trading System Examples & Techniques

78

Parabolic SAR / MA Script

Buy Signals

Buy if the MAs crossed today or yesterday and
if the PSAR crossed today or yesterday
FIND STOCKS WHERE

(CROSSOVER(CLOSE, PSAR(0.02, 0.2)) OR
CROSSOVER(REF(CLOSE,1), PSAR(0.02, 0.2)))

AND

(CROSSOVER(EMA(CLOSE, 10), EMA(CLOSE, 20)) OR
CROSSOVER(REF(EMA(CLOSE, 10),1), REF(EMA(CLOSE, 20),1)))

Sell Signals

Sell if the MAs crossed today or yesterday and
if the PSAR crossed today or yesterday
FIND STOCKS WHERE

(CROSSOVER(PSAR(0.02, 0.2), CLOSE) OR
CROSSOVER(PSAR(0.02, 0.2), REF(CLOSE,1)))

AND

(CROSSOVER(EMA(CLOSE, 20), EMA(CLOSE, 10)) OR
CROSSOVER(REF(EMA(CLOSE, 20),1), REF(EMA(CLOSE, 10),1)))

Trading System Examples & Techniques

79

MACD Momentum System

In this trading system we use an exponential moving average and the TREND
function to identify market inertia, and we use the Moving Average Convergence
/ Divergence (MACD) indicator to detect market momentum.

As you may know, the MACD indicator reflects the change of power between
traders who are on the long side and traders who are on the short side. When the
trend of the MACD indicator goes up, it indicates that the market is predominated
by bulls, and when it falls, it indicates that bears have more influence. This is
known as market momentum.

This system buys when both inertia (a TREND of the EMA) and momentum (the
MACD) are both in favor of rising prices. The system sells when the reverse is
true.

Exit signals are generated whenever either signal turns to the opposite direction.

Trading System Examples & Techniques

80

MACD Momentum Script

Buy Signals

Buy if both momentum and inertia are favorable
TREND(EMA(CLOSE, 20), 15) = UP AND
TREND(MACD(13, 26, 9, SIMPLE), 5) = UP

Sell Signals

Sell if both momentum and inertia are favorable
TREND(EMA(CLOSE, 20), 15) = DOWN AND
TREND(MACD(13, 26, 9, SIMPLE), 5) = DOWN

Exit Long Signal

Exit if either momentum or inertia become unfavorable
TREND(EMA(CLOSE, 20), 15) = DOWN OR
TREND(MACD(13, 26, 9, SIMPLE), 5) = DOWN

Exit Short Signal

Exit if either momentum or inertia become unfavorable
TREND(EMA(CLOSE, 20), 15) = UP OR
TREND(MACD(13, 26, 9, SIMPLE), 5) = UP

Trading System Examples & Techniques

81

Narrow Trading Range Breakout

Stocks that remain bound by narrow trading ranges often tend to continue in the
direction of their breakout. That is to say, if a stock remains in a narrow range
between $40 and $45 for an extended period then breaks above $50, it is likely
to continue rising for the foreseeable future. The premise being that the longer a
stock remains in a tight range, the more difficult it is becomes to breakout of the
trading range. Therefore when the breakout occurs, the uptrend should continue.

Narrow Trading Range Script

Define a 2% trading range over 50 days
FIND STOCKS WHERE
MAX(CLOSE, 50) < CLOSE * 1.01 AND
MIN(CLOSE, 50) > CLOSE * 0.98 AND

Filter out inactive securities
CLOSE != REF(CLOSE, 1) AND
REF(CLOSE,1) != REF(CLOSE, 2) AND
REF(CLOSE,2) != REF(CLOSE, 3)

Trading System Examples & Techniques

82

Fundamental Trading System

The fundamental system evaluates to true when a security is in an uptrend and
has a high dividend payout. The concept of this medium to long term trading
system is that securities paying significant dividends tend to have less downside
risk than other securities.

One of the biggest advantages of dividend paying securities is that you get paid
just to hold them, which is in sharp contrast to the usual situation where one must
sell a stock at a higher price to make a profit. This doesn’t mean that dividend
stocks won’t go up however. Studies have shown that high dividend paying
stocks may actually outperform non-dividend stocks in terms of total return.

Trading System Examples & Techniques

83

Fundamental Trading System Script

Buy Signals

Buy in an uptrend with a high dividend
DIVIDEND > 3 AND TREND(CLOSE, 50) = UP

Sell Signals

NA

Exit Signals

Exit if and when dividend decreases or TREND changes to DOWN.

Trading System Examples & Techniques

84

Outside Day System

An Outside Day occurs when the current bar’s high price is higher than the
previous bar’s high price, and the current bar’s low price is lower than the
previous bar’s low price. The close must be opposite of the trend (if the trend is
up, the close must be lower than the open). Outside days occur frequently and
may be used as part of a short term trading strategy.

Outside days that occur after a strong uptrend as shown in this chart indicate
market indecision, and may signal a reversal or temporary correction in price.
Depending on market direction, outside days can be either bullish or extremely
bearish. If the reversal occurs at the stock's resistance level, it is interpreted as
bearish. If it occurs at the stock's support level, it is interpreted as bullish.

Trading System Examples & Techniques

85

Outside Day Script

Buy Signals

Find outside days
LOW < REF(LOW, 1) AND
HIGH > REF(HIGH, 1) AND
HIGH > REF(HIGH, 1) AND
CLOSE < OPEN AND

Outside days are more significant if the
previous bar is shorter in height
HIGH - LOW > (REF(HIGH, 1) - REF(LOW, 1)) * 1.5 AND

The trend should be up
TREND(CLOSE, 30) = UP

Sell Signals

Find outside days
LOW < REF(LOW, 1) AND
HIGH > REF(HIGH, 1) AND
HIGH > REF(HIGH, 1) AND
CLOSE < OPEN AND
HIGH - LOW > (REF(HIGH, 1) - REF(LOW, 1)) * 1.5 AND

The trend should be down for a sell signal
TREND(CLOSE, 30) = DOWN

Trading System Examples & Techniques

86

Japanese Candlestick Engulfing Line System

Bullish and Bearish Engulfing Lines may be part of an effective short term trading
strategy when used with volume. These patterns seem to be more predictive
when the volume has increased sharply. Engulfing Lines often signal a trend
reversal. The candlestick pattern consists of a short body, followed by a day with
a taller body that completely engulfs the previous day's body.

Bullish Pattern Bearish Pattern

A Bullish Engulfing Line indicates a potential reversal of a downtrend, whereas a
Bearish Engulfing line indicates a potential reversal of an uptrend.

The patterns have more predictive power if they occur after a significant trend.

Signals

Bullish Pattern
CANDLESTICKPATTERN() = BULLISH_ENGULFING_LINE AND TREND(CLOSE, 30) =
DOWN AND VOLUME > REF(VOLUME, 1)

Bearish Pattern
CANDLESTICKPATTERN() = BEARISH_ENGULFING_LINE AND TREND(CLOSE, 30) = UP
AND VOLUME > REF(VOLUME, 1)

Also see chapter 5 for a complete list of other Japanese candlestick patterns.

87

 Chapter 5

 Primitive Variables, Constants, and Flags

5

Primitive Types

This chapter serves as a look-up reference for primitive variables, constants, and
flags, such as definitions for fundamental data, candlestick patterns, technical
indicator flags, and sector & industry constants.

Price Vectors

Basic price data such as open, high, low, close and volume can be used as a
vector by any function or expression.

OPEN Opening price of the day
HIGH High price of the day (updates throughout the trading session)
LOW Low price of the day (updates throughout the trading session)
CLOSE Closing price of the day
LAST The last price (updates throughout the trading session)

Same value as CLOSE if after trading hours.
VOLUME Trading volume for the day (updates throughout the session)

Fundamental Variables

Fundamental variables are updated throughout the trading session.

PE_RATIO Price to Earnings Ratio
DIVIDEND Annual Dividend
YIELD Yield Value
52_WEEK_HIGH The 52-week high
52_WEEK_LOW The 52-week low
ALL_TIME_HIGH The all time high since stock inception
ALL_TIME_LOW The all time low since stock inception

 Primitive Variables, Constants, and Flags

88

Basic Constants

TRUE 1
FALSE 0
PI 3.1415926535897932384626433832795
NULL 0 (empty vector)
ADD 1 (used by LOOP function)
SUBTRACT 2 (used by LOOP function)
MULTIPLY 3 (used by LOOP function)
DIVIDE 4 (used by LOOP function)

Back Testing Flags

MAX_POSITION_OPEN Flag used for back testing. When this value is set via the

SET keyword, all positions will be closed out after the
specified number of days regardless of if the buy, sell, or
exit script has been evaluated to TRUE. Example:

Never allow a position stay open longer than 20 days
SET MAX_POSITION_OPEN = 20

 Primitive Variables, Constants, and Flags

89

Moving Average Constants

SIMPLE 1
EXPONENTIAL 2
TIME_SERIES 3
VARIABLE 4
TRIANGULAR 5
WEIGHTED 6
VOLATILITY 7
WILDER 8
Trend Constants (used by TREND function)

UP 1
DOWN 2
SIDEWAYS 3

Points or Percent Constants (used by indicators)

POINTS 1 (specifies output to be measured in points)
PERCENT 2 (specifies output to be measured in percent)

Candlestick Pattern Constants

LONG_BODY

DOJI

HAMMER

 Primitive Variables, Constants, and Flags

90

HARAMI

STAR

DOJI_STAR

MORNING_STAR

EVENING_STAR

PIERCING_LINE

BULLISH_ENGULFING_LINE

BEARISH_ENGULFING_LINE

DARK_CLOUD_COVER

HANGING_MAN

 Primitive Variables, Constants, and Flags

91

BEARISH_DOJI_STAR

BEARISH_SHOOTING_STAR

SPINNING_TOPS

HARAMI_CROSS

BULLISH_TRISTAR

THREE_WHITE_SOLDIERS

THREE_BLACK_CROWS

ABANDONED_BABY

BULLISH_UPSIDE_GAP

BULLISH_HAMMER

 Primitive Variables, Constants, and Flags

92

BULLISH_KICKING

BEARISH_KICKING

BEARISH_BELT_HOLD

BULLISH_BELT_HOLD

BEARISH_TWO_CROWS

BULLISH_MATCHING_LOW

 Primitive Variables, Constants, and Flags

93

Sector and Industry Constants

The following sector and industry constants may be used as a filter to limit your
trading system to a specific sector or industry.

Sector and Industry constants can be set via the SET keyword, e.g.:

SET Sector = Basic Materials

Or:

SET Industry = Personal & Household Products

Sector Constants

Services
Capital Goods
Transportation
Consumer Cyclical
Consumer Non-Cyclical
Healthcare
Services
Basic Materials
Energy
Technology
Services
Technology
Conglomerates
Capital Goods
Financial
Basic Materials
Consumer Non-Cyclical
Basic Materials
Consumer Non-Cyclical
Consumer Cyclical
Basic Materials
Consumer Cyclical
Basic Materials
Healthcare
Services
Financial
Basic Materials
Consumer Cyclical
Healthcare

 Primitive Variables, Constants, and Flags

94

Basic Materials
Capital Goods
Basic Materials
Financial
Transportation
Capital Goods
Financial
Services
Utilities
Basic Materials
Technology
Consumer Non-Cyclical
Energy
Basic Materials
Consumer Non-Cyclical
Services
Consumer Cyclical
Services
Transportation
Services
Consumer Cyclical
Financial
Services
Financial
Services
Technology
Services
Technology
Consumer Cyclical
Consumer Non-Cyclical
Transportation
Services
Transportation
Utilities

 Primitive Variables, Constants, and Flags

95

Industry Constants

Advertising
Aerospace & Defense
Air Courier
Airline
Apparel/Accessories
Appliance & Tool
Audio & Video Equipment
Auto & Truck Manufacturers
Auto & Truck Parts
Beverages (Alcoholic)
Beverages (Non-Alcoholic)
Biotechnology & Drugs
Broadcasting & Cable TV
Business Services
Casinos & Gaming
Chemical Manufacturing
Chemicals - Plastics & Rubber
Coal
Communications Equipment
Communications Services
Computer Hardware
Computer Networks
Computer Peripherals
Computer Services
Computer Storage Devices
Conglomerates
Construction & Agricultural Machinery
Construction - Supplies & Fixtures
Construction - Raw Materials
Construction Services
Consumer Financial Services
Containers & Packaging
Crops
Fabricated Plastic & Rubber
Fish/Livestock
Food Processing
Footwear
Forestry & Wood Products
Furniture & Fixtures
Gold & Silver
Healthcare Facilities
Hotels & Motels
Insurance (Accident & Health)
Insurance (Life)

 Primitive Variables, Constants, and Flags

96

Insurance (Miscellaneous)
Insurance (Prop. & Casualty)
Investment Services
Iron & Steel
Jewelry & Silverware
Major Drugs
Medical Equipment & Supplies
Metal Mining
Misc. Capital Goods
Misc. Fabricated Products
Misc. Financial Services
Misc. Transportation
Mobile Homes & RVs
Money Center Banks
Motion Pictures
Natural Gas Utilities
Non-Metallic Mining
Office Equipment
Office Supplies
Oil & Gas - Integrated
Oil & Gas Operations
Oil Well Services & Equipment
Paper & Paper Products
Personal & Household Products
Personal Services
Photography
Printing & Publishing
Printing Services
Railroads
Real Estate Operations
Recreational Activities
Recreational Products
Regional Banks
Rental & Leasing
Restaurants
Retail (Apparel)
Retail (Catalog & Mail Order)
Retail (Department & Discount)
Retail (Drugs)
Retail (Grocery)
Retail (Home Improvement)
Retail (Specialty)
Retail (Technology)
S&Ls/Savings Banks
Schools
Scientific & Technical Instr.

 Primitive Variables, Constants, and Flags

97

Security Systems & Services
Semiconductors
Software & Programming
Textiles - Non Apparel
Tires
Tobacco
Trucking
Waste Management Services
Water Transportation
Water Utilities

Troubleshooting

98

 Chapter 6

 Troubleshooting

6

Troubleshooting

Problem
TradeScript™ reports a script error such as:
“The variable name ---- is not recognized” or “The argument of ---- function is not
optional”.

Solution
Follow the instructions on your screen to correct the script error.

Problem
TradeScript™ reports a script timeout.

Solution
Either shorten your script or contact your software vendor for support.

Problem
I would like to use the TradeScript DLL to develop a trading system using a
standard programming language such as VB6, VB.NET, C++, or Excel

Solution
Please visit http://www.modulusfe.com/tradescript/ for licensing information.

http://www.modulusfe.com/tradescript/

Troubleshooting

99

Where do I go for more help?

TradeScript™ was developed by Modulus Financial Engineering, Inc. and
licensed to your trading software vendor under an OEM license. Please contact
your software vendor for support and documentation regarding the TradeScript™
language.

100

Index
A
Abandoned Baby, Candlesticks 91
Abbreviations, Functions 31
Abs 23
Accumulative Swing Index 58
ADD, Operator 88
ADX, DI+, DI-, Directional System 47
AND, Keyword 28
Aroon 49
Arrays 9
Atn 24
Average, Avg 20

B
Band Indicators 39
Bands, Prime Number 40
BASIC Programming Language 8
Belt Hold, Bearish Candlesticks 91
Belt Hold, Bullish Candlesticks 91
Bollinger Bands 39
Bollinger Bands Trading System 73
Boolean Logic 6

C
Chaikin Money Flow Index 54
Chaikin Volatility Index 49
Chande Momentum Oscillator 42
CLOSE 87
Commodity Channel Index 59
Comparative RSI 54
Conditional IF Function 17
Constants 88
Control Structure 16
Correlation Analysis 65
Cos 24
COUNTIF 19
C++ Programming Language 8
Crossovers 13

D
Dark Cloud Cover, Candlesticks 90
Detrended Price Oscillator 43
DIVIDE, Operator 88
Dividend 12
Doji, Candlesticks 89
Doji Star, Bullish Candlesticks 89
Doji Star, Bearish Candlesticks 90

E
Ease Of Movement 46
Engulfing Line System 90
Engulfing Lines, Bearish Candles 90
Engulfing Lines, Bullish Candles 90
Equals, Operator 26
Eqv 29
Erroneous Results, Prevention 7
Evening Star, Candlesticks 90
Exp 24
Exponential Moving Average 32

F
FALSE 88
Forecast 38
Fractal Chaos Oscillator 44
Functions, Built-In 7
Fundamental Analysis 12
Fundamental Trading System 82

G
Gaps, Price 11
General Indicators 61
Greater Than, Operator 26
Greater Than Or Equal To, Operator 27
GUID, Globally Unique Identifier 15

101

H
Hammer, Bullish Candlesticks 91
Hanging Man, Candlesticks 90
Harami, Candlesticks 89
Harami Cross, Candlesticks 90
HIGH 87
High, 52 Week 12
High, All Time 12
High Minus Low 50
Highest High Value 63
Historical Volatility System 75
Historical Volatility Index 53

I
Index Functions 52
Industries, Filter 14
Inertia 79
Intercept, Linear Regression 38

J
Japanese Candlesticks 66
Java Programming Language 8

K
Key Reversals 14
Kicking, Bearish Candlesticks 91
Kicking, Bullish Candlesticks 91

L
LAST 87
LASTIF 19
Less Than 26
Less Than Or Equal To, Operator 27
Linear Regression 37

Linking Scripts, LINK 15
Log 25
Log10 25
Long Body, Candlesticks 89
LOOP Function 17
Lost Password 98
LOW 87
Low, 52 Week 12
Low, All Time 12
Lowest Low Value 64

M
Moving Average Crossover Sys 69
MACD 50
MACD System 79
Mass Index 52
Matching Low, Bullish Candlesticks 92
Math Functions 23
Max 20
MAX_OPEN_POSITION 88
MAXOF 21
Median Price 61
Min 21
MINOF 21
Mod 30
Momentum Oscillator 41
Money Flow Index 53
More Help and Support 99
Morning Star, Candlesticks 89
Moving Averages 32
Moving Average Envelope 40
Multidimensional 8
MULTIPLY, Operator 88

N
Negative Volume Index 56
NOT 29
Not Equal To 27
Null 88

102

O
On Balance Volume 56
OPEN 87
Operators 26
OR Keyword 28
Oscillator Indicators 41
Outside Day System 84
Overbought 41
Oversold 41

P
Parabolic SAR 59
Parabolic SAR System 77
PE Ratio 12
Performance Index 57
PI 88
Piercing Line, Candlesticks 90
Positive Volume Index 55
Price 87
Price Gap System 71
Price Oscillator 43
Price Rate of Change 62
Price Volume Trend 55
Prime Number Oscillator 44
Primitives 16
Program Structure 6

R
R Squared Linear Regression 37
Rainbow Oscillator 45
REF 22
Relative Strength Index 52
Random, Rnd 25

S
Scalar Operations 8
Sector & Industry Constants 93
Sectors Filter 14
Shooting Star, Bearish Candlesticks 90

Sign In Error 98
Simple Moving Average 98
Sin 23
Slope, Linear Regression 37
Standard Deviations 64
Spinning Tops, Candlesticks 90
Star, Candlesticks 89
Stochastic Momentum Index 60
Stochastic Oscillator 51
SUBTRACT, Operator 88
Sum 20
SUMIF 19
Swing Index 58

T
Tan 24
Technical Analysis 31
Three Black Crows, Candlesticks 91
Three White Soldiers, Candlesticks 91
Time Series Moving Average 32
Timeout, Script 99
Trade Volume Index 57
Trading Range Breakout System 81
Trading System 68
TREND 22
Triangular Moving Average 34
Tri Star, Bullish Candlesticks 91
TRIX 45
Troubleshooting 98
TRUE 88
True Range 47
Two Crows, Bearish Candlesticks 92
Typical Price 61

U
Upside Gap, Bullish Candlesticks 91

103

V
Variable Moving Average 34
Variable Missing, Error 98
Vector Programming 8
Vertical Horizontal Filter 46
VIDYA 36
Volatility Measure 11
Volume 87
Volume Oscillator 42
Volume Rate of Change 63

W
Weighted Close 62
Weighted Moving Average 35
Welles Wilder Smoothing 35
Williams Accumulation / Distribution 48
Williams %R 48

X
XOR Keyword 29

Y
Yield 12

Z
Zero Based Array 9

	Introducing TradeScript
	Prerequisites
	How This Guide Is Organized
	The TradeScript™ Programming Language
	Introduction: Important Concepts
	Boolean Logic
	Program Structure
	Functions
	Vector Programming
	The REF Function
	The TREND Function
	Price Gaps and Volatility
	Fundamental Analysis
	Technical Analysis
	Crossovers
	Sectors and Industries
	Key Reversal Script

	Primitive Functions & Operators
	Primitives
	Conditional “IF” Function
	LOOP Function
	COUNTIF
	LASTIF
	SUMIF
	SUM
	AVG
	MAX
	MIN
	MAXOF
	MINOF
	REF
	TREND
	CROSSOVER

	Math Functions
	ABS
	SIN
	COS
	TAN
	ATN
	EXP
	LOG
	LOG10
	RND

	Operators
	Equal (=)
	Greater Than (>)
	Less Than (<)
	Greater Than Or Equal To (>=)
	Less Than Or Equal To (<=)
	Not Equal (<> or !=)
	AND
	OR
	XOR
	NOT
	EQV
	MOD

	Technical Analysis Functions
	Moving Averages
	Simple Moving Average
	Exponential Moving Average
	Time Series Moving Average
	Variable Moving Average
	Triangular Moving Average
	Weighted Moving Average
	Welles Wilder Smoothing (Moving Average)
	Volatility Index Dynamic Average - VIDYA (Moving Average)

	Linear Regression Functions
	R2 (R-Squared)
	Slope
	Forecast
	Intercept

	Band Functions
	Bollinger Bands
	Moving Average Envelope
	Prime Number Bands

	Oscillator Functions
	Momentum Oscillator
	Chande Momentum Oscillator
	Volume Oscillator
	Price Oscillator
	Detrended Price Oscillator
	Prime Number Oscillator
	Fractal Chaos Oscillator
	Rainbow Oscillator
	TRIX
	Vertical Horizontal Filter
	Ease Of Movement
	Wilder’s Directional Movement System
	True Range
	Williams %R
	Williams’ Accumulation / Distribution
	Chaikin Volatility
	Aroon
	Moving Average Convergence / Divergence (MACD)
	High Minus Low
	Stochastic Oscillator

	Index Functions
	Relative Strength Index
	Mass Index
	Historical Volatility Index
	Money Flow Index
	Chaikin Money Flow Index
	Comparative Relative Strength Index
	Price Volume Trend
	Positive Volume Index
	Negative Volume Index
	On Balance Volume
	Performance Index
	Trade Volume Index
	Swing Index
	Accumulative Swing Index
	Commodity Channel Index (CCI)
	Parabolic Stop and Reversal (Parabolic SAR)
	Stochastic Momentum Index

	General Indicator Functions
	Median Price
	Typical Price
	Weighted Close
	Price Rate of Change
	Volume Rate of Change
	Highest High Value
	Lowest Low Value
	Standard Deviations
	Correlation Analysis

	Japanese Candlestick Patterns

	Trading System Examples & Techniques
	Trading Systems
	Moving Average Crossover System
	Moving Average Crossover System Script

	Price Gap System
	Price Gap Script

	Bollinger Bands System
	Bollinger Bands Script

	Historical Volatility and Trend
	Historical Volatility and Trend Script

	Parabolic SAR / MA System
	Parabolic SAR / MA Script

	MACD Momentum System
	MACD Momentum Script

	Narrow Trading Range Breakout
	Narrow Trading Range Script

	Fundamental Trading System
	Fundamental Trading System Script

	Outside Day System
	Outside Day Script

	Japanese Candlestick Engulfing Line System

	Primitive Variables, Constants, and Flags
	Primitive Types
	Price Vectors
	Fundamental Variables
	Basic Constants
	Back Testing Flags
	Moving Average Constants
	Trend Constants (used by TREND function)
	Points or Percent Constants (used by indicators)
	Candlestick Pattern Constants

	Sector and Industry Constants
	Sector Constants
	Industry Constants

	Troubleshooting
	Where do I go for more help?

	Index

